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Abstract

The Quillen—Bismut—Freed construction associates a determinant line bundle with connection to
an infinite dimensional super vector bundle with a family of Dirac-type operators. We define the
regularized first Chern form of the infinite dimensional bundle, and relate it to the curvature of the
Bismut—Freed connection on the determinant bundle. In finite dimensions, these forms agree (up to
sign), but in infinite dimensions there is a correction term, which we express in terms of Wodzicki
residues.

We illustrate these results with a string theory computation. There is a natural super vector bundle
over the manifold of smooth almost complex structures on a Riemannian surface. The Bismut—Freed
superconnection is identified with classical Teichmuller theory connections, and its curvature and
regularized first Chern form are computed.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A finite rank Hermitian super vector bundfe= £* @ £~ has an associated determinant
bundle Deté) = (DetE1) @ DetE~. A connectionv¢ on £ with curvature2¢ induces a
connectionvPe on the determinant bundle, with curvatug®et¢ = —str(22¢) equal to
minus the first Chern form on the original bundle
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In this paper, we investigate whether this property carries over to infinite rank bundles
of physical interest. The immediate problem is thatsfr) involves a divergent sum. The
paper breaks the problem down into two parts: (i) constructing the determinant bundle
associated to an infinite rank superbundle, followjAd 8]; (ii) defining the first Chern
form of the superbundle, and relating it to the curvature on the determinant bundle.

As background, Quillefil8] constructed the determinant bundle with a natural metric
associated to a family of Cauchy—Riemann operators on a Riemann surface, and computed
its curvature. Later, Bismut and Frepl] equipped the determinant bundle associated to a
family of Dirac-type operators with a connection compatible with this Quillen metric, and
computed the curvature in terms of local invariants of the underlying spin manifold. Freed
[8] considered characteristic forms on loop groups, overcoming divergence problems via
an ad hoc summation technique [l315], more natural (but less tractable) heat kernel and
zeta function regularization techniques were used to renormalize divergent expressions.

While these constructions involve no regularization in finite dimensions and hence are
compatible, the regularization techniques introduce unavoidable discrepancies measured by
Wodzicki residues in infinite dimensions. The choice of technique depends on the physical
problem at hand. The Bismut—Freed definition of the regularized first Chern form is the cur-
vature of the Bismut—Freed connection, which characterizes the local geometric obstruction
to trivializing the determinant bundle, the (local geometric) anomaly. In contrast, our defi-
nition of the regularized first Chern form differs from the Bismut—Freed one by a Wodzicki
residue. However, our regularization applies to a larger class of infinite dimensional bun-
dles, such as the tangent bundle to loop groups and other infinite dimensional manifolds,
and may lead to a theory of characteristic classes in infinite dimensions genergizing

In more detail, inSections 2—4we formalize the construction of Quillen-Bismut—Freed
determinant bundles in terms of determinant bundles associated to “half-weighted super
vector bundles”. We first restrict ourselves to a class of super vector bufidies ™ @
£~, where&* are vector bundles with fibers modeled on Sobolev spakf&M, E¥) of
sections of some finite rank vector bundigs over a closed Riemannian manifald. A
half-weighted vector bundis such a superbundle together with a field/family

0 L~
L =

of odd operators locally given by constant order elliptic operators (satisfying a common
Agmon—Nirenberg condition) acting on smooth sectionszo& E* & E ~. This local
characterization makes sense globally if the transition maps are themselves zero order,
grading preserving elliptic operators #h. If £ comes with a Hermitian structure, as in our
main example of families of Dirac operators, we will demand thdite self-adjoint. To a
half-weighted super vector bundl€, L) we associate a determinant bundle @ef.), the
Quillen determinant bundle of the family™.

Given a half-weighted vector bundié, L), we haveafamiy) = L2 = L~ LT@®LTL~
of positive, self-adjoint, locally elliptic operators acting fiberwisefors in [16], we call
(€, Q) aweighted vector bundldheweightQ can be viewed as metric data on the infinite
dimensional vector bundi& and the existence df allows us to view£ as a spinor bundle
with Clifford multiplication given by thehalf weightL.
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Starting in Section 5 we construct regularized first Chern forms. Usi@g we de-
fine Q-weighted tracesr? and Q-weighted supertracestr?, which are linear function-
als on sections o€L(£), the bundle of operators which are locally given by classical
pseudo-differential operators (PDOs) on the fiber§.de define theveighted first Chern
form of a superconnectioR on (€, Q) as theQ-weighted supertrace &t2¢) of the
curvature of the connection, providezf is a two-form with values in PDOs on the fibers
of &

Our main resultsection 7 Theorems 3 and)show that the curvature of the Bismut—
Freed connection on the determinant bundle associated to a half-weighted superbundle
with connection differs from (minus) the weighted first Chern form on the superbundle by
a linear combination of Wodzicki residues (Theorem 3) or equivalently by a renormalized
trace farm (Theorem 5). This obstruction to the finite dimensional formula arises from the
non-vanishing of V¢, str?], a feature of the infinite dimensional weighting procedure. We
express this obstruction in two ways:

e viazetafunctionregularization, using weighted supertraces and evaluating the obstruction
[VE, trQ] in terms of a Wodzicki residueTheorem 3;

¢ via heat kernel regularization, using a one-parameter family of Bismut connef3ipns
and evaluating the obstruction in terms of regularized trace fafimsarem 3.

We also showCorollary 6 that the weighted first Chern form is more local than the curvature

of the Bismut—Freed connection in a certain technical sense. In the proof of the Corollary,

we see that the curvature of the superbundle is a multiplication operator and, therefore, not

trace-class. Thus regularization procedures are necessary to define the first Chern form.
In Section 8 we illustrate the main results with a string theory/Teichmdller theory exam-

ple. Here the action aff**1 diffeomorphisms of a closed surfageon the manifold4(A)

of smooth almost complex structures angives rise to a familyx; : HtL(TA) —

HS(TllA), J € A(A) of elliptic operators. Setting™ = TA*(A)|44) andE~ =

A(A) x H*(T{A), we can view

a O

as a half-weighted superbundle. We identify the Bismut—Freed superconnection with clas-
sical connections in Teichmdaller theory.

In Appendix A we collect some superconnection calculationsAppendix B as sug-
gested by the different proofs ®heorems 3 and,3ve relate Wodzicki residues to the trace
forms of[10].

1.1. Notation

Let E be afinite rank Hermitian or Riemannian vector bundle over a Riemannian manifold
M. The naturalL? inner product on the smooth sectionsffs defined by

(0. 7) E/ (o (x), T(x0))x dpu(x),
M
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where i is the volume measure on M and -),, the inner product on the fiber af
abovex.

We denote byCL(M, E) the algebra of classical PDOs acting on smooth sections of
E, by Ell(M, E) the multiplicative subset of elliptic PDOs, by BM, E) the subset of
self-adjoint elliptic PDOs and by Efi(M, E) the subset of positive elliptic PDOs. Adding
the subscript ord> 0 to these sets restricts to operators of strictly positive order. Adding
the superscript restricts to injective operators.

In the following, we takes > (dim M)/2. Recall that fors > (dim M)/2, we have
HMS(M,E) ¢ CK(M,E) for anyk € N, where H' (M, E) (respectivelyC*(M, E))
denotes the space &f' (respectivelyC*) sections of the bundI&.

2. A class of vector bundles

We say that a Hilbert spacH lies in the clas<H if there is a closed smooth Rie-
mannian manifoldV, a finite rank Hermitian/Riemannian vector bundeover M, and
s > (dimM)/2 such thatH = H*(M, E). For example, folG be a Lie group and Lig7)
its Lie algebra, the Lie algeb#* (M, Lie(G)) of the Hilbert current grougf* (M, G) lies
in CH.

LetCE& be the class of Riemannian Hilbert vector bundles X over a (possibly infinite
dimensional) manifol with fibers modeled on a separable Hilbert spHce- H* (M, E)
in CH and with transition maps i@L(M, E). Note that these PDOs have coefficients only
in some Sobolev class. However, the PDOs in the examples below are locally given by
multiplication operators, and are as tractable as PDOs with smooth coefficients.

CX denotes the class of infinite dimensional manifaldwith tangent bundld@Xin CE.
Since the transition maps are bounded, they correspond to operators of order zero. Moreover,
the transition maps are invertible, so they in fact lie in(H| E).

We now give examples of manifolds ¢’ and vector bundles i6€.

Examples. (i) Finite rank vector bundles lie iGE€. To see this, we take as base manifold
a point{x}, and as the bundIg the trivial bundle{x} x R¢ (or {x} x C? if the bundle is
complex). The transition functions belong to @4}, E) = Gl;(R) (or Gl;(C)). We say
that M is reduced to a point.

(ii) If GisalLiegroupand > (dim M)/2, the current group/* (M, G) is a Hilbert Lie
group having a left invariant atlas, (1) (x) = exp, () (u(x)), forx e M,y € H*(M, G),
where exp,,, is the exponential coordinate chartatr) induced by a left invariant Rie-
mannian metric oi;. The transition functions are given by multiplication operators, which
indeed are PDOs.

(i) Let M = A be a closed, oriented, Riemannian surface of ggnus 1, and let
A*(A), s > 1, be the space of almost complex structuresiasf Sobolev clasgi?, i.e.

A*(A) = {J € H (T{A), J? = —Id,, J, preserves orientation Gf, A for x € A}.
A*(A) is a smooth Hilbert manifold with tangent space/at A*(A) given by[20]
T; A (A) = (H € H* (T A), HJ+ JH = 0}.
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(The set of smooth almost complex structuréeA) = N;-1.4°(A) is only a Fréchet
manifold). We determine the transition maps. The charts are given pointwise by the ma-
trix exponential map expH (x) = exp;(,,H (x). Hence the transition maps as maps on
H‘V(TllA) are multiplication operators, so they are PDOs of order zero. Thdig A) is

in C&€ with fibers modeled of{* (A, E) whereE = TllA. In the string theory example in
Appendix B we consider the subbundle given by restrictihg® (A) to the manifold4(A):

E = T.AS(A)|A(A). (2.1)
£~ has an almost complex structure defined fiberwise by
J (UI)H)=J" H,

where *’ denotes pointwise matrix multiplication. Notice that/ifis smooth and{ of class
H*, thenJH is of classH*. 7 ~ induces a splitting

g_ — g_l.O 69g_O,l’
where the fibers of the subbundles abdve A(A) are
g7 =Kern gy —i), & =Ker(J; +1).

Because the almost complex structure is defined pointwisd by ) (x) = J (x) H (x) for
x € A and hence defines a PDO, the transition functions of these subbundles are also given

by PDOs. Thus; ", €5 lie in CE.
(iv) In Appendix B we also consider the trivial bundle

EY = A(A) x H YT 4), (2.2)

which clearly lies inCE. £ has a natural almost complex structyfeé defined fiberwise
by the almost complex structure on the tangent spack to

JT(NHu =Jdu

With respect to the complex structude T A splits intoTA = T34 @ 7014, with
T10A =Ker(J —i), TO1A = Ker(J +i). £ therefore splits into subbundles

g+ _ 8+1,0 @ 8_1,0
whose fibers abové € A(A) are

£ =Ker(J} —i) = H" L (Ker(J —iy),
£ =Ker(J; +1i) = H L (Ker(J +)).

3. Weighted vector bundles and half-weighted super vector bundles

A weighted Hilbert spaces a pair(H, Q) with H in CH andQ € Elloﬁd>o(M, E).
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3.1. Bundles of elliptic operators

Let &£ be a vector bundle iG€ over a manifoldX with £ modeled on a separable Hilbert
spaceH. Forx € X, let CL(&,) be the set of operatots, acting densely on the fibét,
abovex such that for any local trivializatiop : £y, — Uy x H nearx, the operator
PPA(x) = ¢(x)A o (x) L lies in CL(M, E). Hereg(x) : & — H is the isomorphism
induced by the trivialization. Similarly, let Ef, ) be the set of operators, acting densely
on T, X such that for any local trivializatiop : £|y, — U, x H nearx, the operatop® A
liesin Ell(M, E). From this point on we will omit the subscript

These definitions are independent of the choice of local chart. Indeed, since transi-
tion functions are given by operators in the grddp*(M, E) of invertible elements in
CL(M, E), the conditionp?A € CL(M, E) is independent of the choice ¢f Since the
principal symbol is multiplicative and since ellipticity is characterized by invertibility of
the principal symbol, the conditiap? A(x) € Ell(M, E) is also independent of the choice
of ¢. Notice that the order ap”A is independent of the choice of local chart, so we can
speak of the order od. This gives rise to bundleSL(£) and EIKE) with fiber at givenx
by CL(&,) and EIKE,), respectively. In particular, a section of the second bundle is a family
of elliptic operators parameterized by the base.

3.2. Weighted bundles

A local sectionQ of EllI(£), with £ modeled on somé&* (M, E), is positive self-adjoint
if for all x in the support o2, and in any local cha«il/, ¢) aroundx, the operatop® Q (x)
lies in EIIT (M, E). A weighted bundlés a pair(&, Q) with £ in C€ and Q a section of
positive self-adjoint operators of constant order in&Jl A weighted manifold X, Q) is
a manifold inCX such that(TX, Q) is a weighted vector bundle. The operadiQ is by
definition aweighton the model spacH of X.

If £has no Hermitian structure, we can relax our definition of weight to be thashkich
are locally elliptic of constant order with the Agmon—Nirenberg condition (i.e. with leading
symbol having all eigenvalues lying outside some common fixed angle at the origin). In this
generality, the choice of a weiglit replaces the structure gro®@L.(H) = GL(H*(M, E))
of £by the subgrouLy(M, E) = CL*(M, E)NGL(H). (This is not a classical reduction
of structure group, SincEL;(M, E) is nota Lie subgroup d&L(H) in the standard topolo-
gies.) Putting a Hermitian structure éns equivalent to a true reduction G15(M, E) to
CL{(M,E)NU(H).

Examples. We return to examples (i)—(iv).

(i) When £ is a rankn bundle, we can view it as before as a bundle of sections over
a manifold reduced to a point. Th&L(H) = CL{(M, E) = CL*(M, E) = GL(n, C),
so a choice of weight is irrelevant. Howeveéi, *(M, E) N U(H) = U (n), so the “true
reduction” amounts to a choice of Hermitian metric.

(ii) Forthe currentgroupH* (M, G), letQg = A®1,ie(c) be the Laplace—Beltrami oper-
ator onM with values in the Lie algebra L{&) of the groupG, for A the Laplace—Beltrami
operator acting on complex valued functionsdn Fory € H*(M, G), settingQ(y) =
Ly‘lQoL,,,WhereLy is leftmultiplication byy, yields aweighted manifoldH* (M, G), Q).
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(iii) and (iv) We consider the bundle§* defined above. Fod € A(A), let s :
HS*YY(T A) — H*(T1A) be the operator defined by the Lie derivative/of

d *
oju = a(wa), (3.1)

where f,, ; is the flow of the vector field. « is a first-order elliptic operator with range
T;A°(A) ={H € HS(TllA), HJ + JH = 0} [20]. Its adjointe; is defined with respect to
the Hermitian products:

<u,v)}rE/AdMJ(X)(M,v)g,, (3.2a)

(H.K); = [ ds ot K. (3.2b)

Hereg is the unique metric of constant curvaturé among the conformal class of metrics
for which J is orthogonal20], and dx s is the associated volume form. Note that, K) =
tr(HK*), whereK* is the Hermitian adjoint of the matrix representing thel) tensork
with respect tqg,. Sincea’ja; anda o are elliptic, the families

0T ={0] =ajay, ] € AN}, 0~ =1{0; =aya}, ] € A(A)},

yield weighted bundles€*, 0 +) and (£, Q 7), respectively. Thus we get a weighted
super vector bundle

E=EtpE, 0=0"®0". (3.3)
3.3. Half-weighted super vector bundles

For a super vector bund®in C£ with fibers modeled on som@* " (E+) @ H* (E ),
sT > (dim M)/2, via local charts we can write a local sectibrof Ell(£) in matrix form

I - |:L++ Ly :| .
L, L__
Provided the transition maps are even, it makes sense to consider the class of odd operators,
i.e. those which locally have only off-diagonal terms. We definal&weighted superbundle
to be a pair&, L), wheref is a superbundle i6€ with even transition maps and is a
section of odd self-adjoint operators in &ll) of non-zero order.

To a half-weighted superbundl&, L), we can associate a weighted superbutflle® =
L?). SinceL is odd, we can write

o L=
!

so the weightQ can be written as

0=0T"®Q0 =L LT®LTL - =LDHLT® L)*L".
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Examples.

<555+@5, LEHO 0‘7] JeA(A)}),
ay O

with £* as in(2.1) and (2.2)anda; as in(3.1), is a half-weighted super vector bundle.
If ay stabilizes the fibefi’o for eachJ € A(A), we can build a complex half-weighted
bundle(e%0, L10 = (L°, J € A(A)}), whereL® = oy | 0.
J

As shown inLemma 7 Li’o is a Cauchy—Riemann operator, the historically first case of
examples provided by spinor bundles on even dimensional manjfpldy. Letz : Z — B
be a smooth fibration of even dimensional spin manifl#s, » € B}, and let€ — B
be an infinite dimensional super vector bundle with fibé( M}, E};,) for a smooth family
{Ep, b € B} of Clifford bundles onM,;. The Dirac operator®, = D,jr ® D, acton
H*(M,, Eyp) as elliptic operators. For

0 D =D
L, = b b 3.4
b |:Db+ 0 } (3.4)

(&, L) is a half-weighted superbundle.

3.4. From group actions to half-weighted superbundles

Half-weighted superbundles also arise from group actionsglasdP be two infinite
dimensional Hilbert manifolds modeled, respectivelylll)‘n+ (M, EYYyandH® (M, E"),
whereE = E™ @ E ~ is a superbundle oved, such that

(a) G has a smooth group multiplication on the rigRt,, : G — G, y = yyofor yp € G.

(b) G acts onP on the rightby® : G x P — P, (v, p) — p - y, inducing a smooth map
0p:G—Py—>p-yforpeP.

(c) The differentiak, = do,, : T.G — T,(P) is elliptic, with order independent gf.

Let £t = B x Lie(G), whereB is a submanifold of?, Lie(G) = T.G, andé~ = TP|;p.
Then

3
<5=5+@5—, E:{Lbz[o "‘b] beB})
ap O

is a half-weighted superbundle.

Example. In Example (iii) of Section 1.1above, letG = Diff 6+1(A) be the group of
isotopies (i.e. diffeomorphisms homotopic to the identityylodf Sobolev clasg/**1. Al-
thoughg is not a Lie group, it is a Hilbert manifold modeled & *1(T A) with a smooth
multiplication on the rightG acts onA*(A) (which we recall is modeled OHS(Tll) by
pullback, and this action satisfies (a) and (b) above [@@f. Sincex; in (3.1)is elliptic,
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the family

0 of
L= J , J

yields a half-weighted structure on the bunélm (3.3).

4. From a half-weighted super vector bundleto the deter minant bundle

Let (£, L) be a half-weighted super vector bundle over a manif®)dvhich as above
determines the weighted superbun@e Q) with 9 = L2. From (€, L), we construct the
determinant bundl®et(&, L) = Det(£), following [4,5,18]

As before, se€ = £ @ £, where£* has fibers modeled oH‘i(M, E¥), and write
a sectionL of Ell(£) consisting of odd, self-adjoint operators in the form

0 L -=@hH*
LTt 0 ’

Letm bethe orderol.;,, b € B,and set, = s_ +m. This yields a family of Fredholm op-
eratorsL; : H”(M, E*) — H® (M, E™).As Quillen shows, there is a line bundle, the
determinantbundle D&f) overB, with fiber Det€);, ~ (A™PKer L5 )*@® AP CokerL,",
whereA™°P denotes the top exterior power. D&} has a canonical section Dett (b) given
bya®)(ea n---Ne)* @ (fiA--- A fm), Where{e; }, respectively f;}, are orthonormal
bases of the eigenvaluesb[LbJ“, respectivel;Lb*Lb‘, lying below some: € R notin the
spectrum of either operator, andb) is the determinant of the matrix ah‘;r with respect
to the basese; }, { f;}; equivalently,L,"e1 A -+ A L;Fe, = a(b) fu A -+ A f,. Note that
DetL * is zeroiff L, is non-invertible.

4.1. A family of connections on the determinant bundle

Fix ¢ > 0. At any pointb € B, whereL, is injective, thes-cutoff determinant of the
self-adjoint elliptic operato,” = L, L," is defined by

det.Q,f = exp[—/ %tr(e‘Qﬁ)dt]

For non—invertibIeL,j, we subtract off the dimension of the zero eigenspace before taking
the trace in the integral. The cutoff determinants yield a one-parameter family of Quillen
metrics{|| - || .. ¢ > O} on Det&) defined by
detQ,", Lt invertible,
IDetLf |5, = {

det Qg ., -deto; _,. L, non-invertible

HereQ (Jg ~a) is the restriction o ,j tothe eigenspaces abavevith determinant computed
as forQ,j, andQ(Jg <a) is the restriction lej to the finite dimensional eigenspaces below
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a, with the determinant computed as usual. Since our formulas involve regularization only
on the eigenspaces above a fixed, locally definddr notational simplicity we will assume
from now on thathE is invertible. In general, our formulas can be modified via the cutoff
operatorQ ; _, -

GivenaconnectioR¢ on&, asin4] we can define a one-parameter fanjiPet(€)¢ ¢ >
0} of connections on D&f ) compatible with the metricf| - || ., € > O} by

(DetL,h) ~tvPe&)-e pet L -
= tr((L,)~tvHom@p e
= 3(dlogdet O;F + str((L,) VHOME L, g7¢0ry), (4.1)
Here VHoM(£) denotes the connection on HeédT, £7) induced byVv<, and str denotes

the supertrace, defined by
+

Str(A) = str [ AY Xf ] =tr(AT) —tr(A 7). (4.2)
This definition is motivated by the corresponding formula for the natural conng@idh
on the determinant line bundle for a finite rank superbundle.

4.2. Renormalized limits

Following [5, Chapter 9] from the family of connectiongvPe'€)-¢ ¢ ~ 0}, we build
a renormalized connection by taking a renormalized limit as= 0. More precisely, for
(m,n) € (N\ {0}) x N, € R, let F,, .o be the set of functiong : R \ {0} — C such
that there exist;, b, c; € C with

fe) ~ Zajsf—i— Z bs/logs—i—Zc]sJ

Jj=0,A;€Z

ase — 0,where\; = (j—a—n)/m.Inotherwords, fod € NandK; = [e]4+m3Hn € N,
we have

f(e) = Zasl—i— Z bafloge—i—chJ—i—o(aJ)

j=0,r;€Z

(cf. (5.3)). If « € Z, there is a redundancy since constant terms can arise in the first and
last sum. We call such a functisenormalizableand for f € F,, = UpeN.weRFm.n.a» WE
defineu-renormalized limitof f at zero by

L|mg_>0f(8) = ag+n + o — Uby+n, (4.3)

where we sety1, = 0andb,, = 0if e +n ¢ N. Thus Linf_)of(s) is the constant term
in f’s asymptotic expansion minystimes the coefficient of log ([5] only considers the
caseu = y, the Euler constant). If there is no logarithmic divergence, thenEilnm* =
Lim” , is independent of..
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4.3. Arenormalized connection on the determinant bundle

Asin[4,5], we set

(DetL,"H)~tvPeti Det L,

= Lim” tr((L;)—l(vH°m<5>Llj)e—sLb‘Lb*)

e—0

= L(dlogdef, 0, + Lim¥ _str((Ly)"L(VHOME L )e=cy),

—

where
o 1 +
det, Q,;f = exp(—Limé‘_}O/ ;tr(e‘th )d;> _
&

The renormalized connectioviPeté)-# — yDetr js compatible with the renormalized
Quillen metric given by

IDetL}t o, = /det, 0,

The curvature oWPet# js denoted by2Petx,

5. First Chern formson weighted vector bundles

The first Chern form on a finite rank Hermitian bundle with connection is the trace of
the curvature. In infinite rank, one cannot expect curvature to be trace-class in general, so
we need to regularize (or renormalize) the trace. We will use extra data of the weights of
Section 3to define weighted traces in two steps: (i) defining a one-parameter family of
weighted traces; (ii) taking a renormalized limit.

Let (£, Q) be a weighted vector bundle & with fibers modeled orH* (M, E), and
let A be a section o€L(E). Q is positive elliptic with strictly positive order, so fer> 0,
e~¢¢ is infinitely smoothing when seen in a local chart. Thus¢€ is trace-class when
considered in a local chart as a trace-class operator actidg @¥, E). We remark that
a trace-class operator for the inner product(-, -) can be considered equally well as a
trace-class operator with respect to #i& scalar product

(0, p)° = (@ + 1o, (Q + 1)/ 4D p).
5.1. A family of weighted pseudo-traces
We define a one-parameter family @fpseudo-tracesf A by
tr(A) =tr(Ae*9), (5.1)

for e > 0. Again this definition should be understood in a local chart, but it is independent

of the choice of chart, since for an invertible operatomwe have t(CAC~1e=#CQC™) =
tr(CAe2C—1) = tr(A e ¢2). We emphasize that pseudo-traces are not traces in the usual
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sense. First, E[Al, As] # 0in general. Moreover, unlike the finite dimensional case, if
{0:,t € R}, is a one-parameter family of weights afd,,r € R} is a one-parameter
family of PDOs, then for fixed > 0

d . .
g TEA) #UZA) —etr20(A00),
!li=0

whereT = (d/dt)|,=0T;, as one would expect from a formal differentiation(6f1), since
in general neithe® nor Ao commutes withQ. If either O or Ao commutes withQo, this
equation holds bi9, Section 1.9]These obstructions can be analyzed more carefully using
the renormalized pseudo-traces in the next paragraph@sks).

By (5.1), the one-parameter family of connections on the determinant bundle given by
(4.1)is

(Det") ~1vPetée petp + = tr2” (L +)~tvHomE +)
= %(dlog detQ* + Stl’gQ(L_lvHom(g)L)), (5.2)

As beforeQ* = LFL*andQ =01t Q0.

5.2. Renormalized pseudo-traces

From the classical theory of heat expansifh4 1], [14, (3.18)] for a positive elliptic
operatorQ of positive integer order and a PD® acting on sections of a vector bundle
over a closed manifold/, the map: — tr(4A e9) lies in the classr, of Section 4where
g = ord(Q). More precisely, there exig{ = N(dimM) € N*,a = a(ord(A)) € R and
a;(Q, A), Bi(Q, A), y;(Q, A) € C such that

o
tr(Ae *C) ~ Y a;(Q, AN/

j=0
oo oo
+ ) B MY M loge + ) Ty (0, A)e!
J=0.((j—a=N)/q)eZ j=0

(5.3)

ass — 0. As before, constant terms can arise as pgtnda,, v if ord(A) € Z. We define
the Q-renormalized tracef A as theu-renormalized limit of the map — tr(A e¢9), as
in (4.3)

tr#(A) = Lim?_ (tr2(0) = i n (0, A) +10(Q, A) — 1 - Basn(Q, 4).  (5.4)

If we setyu = 0, respectively. = y, the Euler constant, we get a heat kernel renormalized
trace, respectively, a zeta function renormalized trace, and these two are related via a Mellin
transform. In the following, we will usually consider the case- 0, and write t€ for tr2-0.

The results can easily be extended to the general cas@-6f tr
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5.3. Renormalized supertraces

(5.4) extends taQ-renormalized supertraces in the obvious waydo= 0+t @ Q0 ~:
strl#(A) = tr@ (AT —tr@ TR (AT,

for A as in(4.2) with A* PDOs. Renormalized pseudo-traces/supertraces appear in the
geometry of determinant bundlgy, where the connection on the determinant bundle can
be written as

(DetL;")1vPetk DetL b = tr@ (L)~ tvHomE L )
= J(dlogdef, 0 + str#((L,) *VHMEI L)), (5.5)

They also have been used (i) to define minimality of infinite dimensional submanifolds of
manifolds of connections and metri&15] and (i) in relation to determinants of elliptic
operatorg12], for a special class of operators on which they are actually traces.

These renormalized traces are related to Wodzicki residues, as we briefly recall; see
[12,13,16]for more details. Le{&, Q) in CH be a weighted vector bundle with fibers
modeled onH* (M, E), and letA be a section o€L(E). SinceQ is positive elliptic with
strictly positive order for any € C with Re(z) > dim M /ord(Q), the operato(Q + Pp)~*
is trace-class of2(M, E) in any local chart. Her@ is the orthogonal projection onto the
kernel ofQ. Similarly, for Re(z) > (dim M +ord(A))/ord(Q), A(Q+ Pg)~ ¢ istrace-class.

For suchz, we may define

Str2(A) = str(A(Q + Pg) ™).

Becaused®, 0%, Py« are classical PDOs, it is standard tEHf(A) has a meromorphic
continuation taC with at most simple poles. By the Mellin transform, we have

Bain(Q, A) = res_o(Str2(4))

inthe notation of5.3); in particular,8,+,(A) = B4+ (Q, A) isindependent of. It follows
via a Mellin transform that

stré i (A) = Iim0(§frZQ(A) — 2 res—o(Str2(A)) + (y — ) res—o(St2 (A)).

Renormalized pseudo-traces thus arise as the finite part of a divergent expression. The
infinite part is built from the Wodzicki residy@1] reqA):

res(A) = (ord(Q)) res—o(Str? (4)), (5.6)
which defines a trace on the algebra of PO 21]. In summary

Yy —u
ord(Q) e

str&t(A) = Iim0 <§rZQ(A) - reS(A)) + qA).

zord(Q)

We can now defing-weighted first Chern forms on a weighted vector bundle.
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Definition. Let (&€, Q) be a weighted Hermitian (super) vector bundle agevith connec-
tion V¢ and curvature2. Assume that for an, Y € I'(TB), 2¢(X,Y) € I'(CL(E)).
Define

(i) the one-parameter family ad-weighted first Chern forms by
r2f(x,v) =sti?(25(X,Y)), &>0, (5.7)
(ii) the one-parameter family af-renormalized first Chern forms

RZ*(X,Y) =@M (25X, Y)), umeR. (5.8)

6. Thecurvatureon the associated deter minant bundlein finite dimensions

Let & be a finite dimensional bundle with connectiéf, and letx be a Honi&, £)-valued
form. Writing V€ = d + 0 in a local trivialization, we have

dtr(a) = tr([d, «]) = tr([d, a]) + tr([0, a]) = tr([VE, a]), (6.1)

since the trace term({i©, «]) vanishes. The final expression is of course independent of
the choice of local trivialization. Thus the trace of a covariantly constant form is closed. In
particular, since the curvatuse? is covariantly constant by the Bianchi identity, the first
Chern formrf = tr(£2%) is also closed. This form is a representative of the first Chern class
in de Rham cohomology.

This generalizes to supertraces on superbundles

dstr(a) = str([V¢, a]), (6.2)

where [, -]is now a supercommutator aef a superconnection on the superbur@i&he
first Chern forrwf = str(£2%) is therefore also closed.

We recall the relation between the first Chern form of a superbundle and the curvature of
the associated determinant bundle. E€t be Hermitian vector bundles with connections
V&E over a manifoldB. V& induce a connectiolve on £ = £+ @ £~. The bundle
Hom(E™, £7) ~ (E1)* ® £~ has the natural connectionom®) = (V€ ) @ 1+ 1
vE™, given byvHomE) 1+ — V€ L+ for LT € I'(Hom(E™, £7)) (cf. Appendix A).
Assuming for convenience th&f" have the same rank, the determinant bundlg®et
(APPET)* @ APE~ has the Hermitian metric

IDetL || = /det((LH)*L+)

for LT € I'(Hom(E™, £7)) and DetL * the corresponding section of Q&t, £7). V¢
induces a connectioviPet€ on Det£) compatible with this metric, defined at points where
LT is injective by
(DetL H)~IvPe e petL + = tr((L )"V, L))
= J(dlogdetQ * + str(L7[ V¥, L])), (6.3)

whereL =L+t @ (LYH*, 0 = (LT)*L T (cf. (5.3) and (5.5). The following lemma is
well known.
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Lemmal. The curvature2Pet¢ of the connectioPe€ on the determinant bund2et(£)
associated to the connectiorf on the superbundlé = £+ @ £ satisfies

2P — _sir(2%) = ch(Vo)[z, (6.4)

where$2¢ is the curvature o€, andch(V¢)( is the degree two component of the Chern
characterstr(exp[—£2¢]) of the connection, i.e. the curvature of the determinant line bundle
is minus the first Chern form of the superbundle

Proof. For later purposes, we give a basis free proof. Ritky, € T,B, whereL T is
injective atb. ExtendL * nearb so that V¢, L +], = 0. By (6.3), we have

2P(M, Ny = Jd(stL Ve, L) (M, N) = 3 str((VE, L[ VE, LM, N).
Using the Cartan formulasd M, N) = M(a¢(N)) — N(x(M)) — a([M, N]), we get

2PE(M, Ny = st L7V, L], L7YVE, LD + st(L 2%, L)(M, N))
= Jstr(L7YR%, LM, N) = —str(25)(M, N), (6.5)

where we have used std ~1[B, A]) = —2str(B) for A odd, B even. The second equality
in (6.4)is standard. |

7. Thecurvatureon the determinant bundlein infinite dimensions

The main goal of this paper is to see h@v4) extends to the infinite dimensional set-
ting. More precisely, the Quillen—Bismut—Freed theory of determinant bundles constructs
a determinant bundle with connectiof#s2) and (5.5)for certain half-weighted superbun-
dles, with the curvature ¢b.5) computed if{4]. Via weighted traces, we have constructed
weighted and renormalized first Chern forms of such superbundles, and it is natural to ask
if (6.4)continues to hold.

The proof of(6.4) uses the facts (fA, B]) = 0 and d str= str([V<, -]), both of which
fail for weighted traces. Thus we cannot expégtl) to hold in infinite dimensions. In-
deed we will show by two methods thg.4) holds up to an obstruction. The two meth-
ods lead to different expressions for these obstructions which seem difficult to identify
directly.

The first zeta function regularization approach uses weighted traces to express the su-
pertrace of a commutator and the obstruction to dstistr([V, -]) in terms of Wodz-
icki residues. The appearance of Wodzicki residues is natural, since they are defined
via zeta function regularization. The second heat kernel regularization approach uses a
one-parameter family of superconnections introduced by BigBjuto avoid weighted
traces, and closely follows the methods usef#ib] to compute the curvature on the de-
terminant bundle for families of Dirac operators.
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7.1. First approach using weighted traces

Let€ = £T @ £ in CE be a superbundle with connecti®i¥ with even transition maps
acting on a model spadé’ (M, E), s > (dim M) /2. LetQ be aweight oif. The following
lemma expresses the obstruction to d=ststr([V, -]) as a Wodzicki residue.

Lemma?2([6]). Let(&, Q) be aweighted vector bundle with connectover a manifold
B, and letw, 8, be sections of the bundle GI) based on B. Fop: € R,

1)

1
0.1 —
(2)If [V, log Q] and[V, «] are CL(E)-valued one-forms, then
1
0, — str@ - .
d(str*-*(a)) = str<*([V, a]) ord(0) reqoa - [V, log Q). (7.2)

For completeness, we outline the proo{8f2)for traces, which easily extends to super-
traces, and refer the reader[&] for (7.1). As before, t€ denotes the renormalized trace
tr-# at . = 0; the results extend to # 0.

One first shows that for one-parameter families of operator&e CL(M, E), O, €
EII;;d>0(M, E) of constant order, we have

—| @A, = tro d A ) - 1 res Aog
dr|,_o dr|,_o ord(Q)o dr

This uses the fundamental property of the canonical trace of Kontsevich—Y1ilSim-
ilarly, in a fixed local trivialization of, we have

log Q,> :

t=0

dtr€(a) = tré(da) — rega dlog Q). (7.3)

1
ord(Q)

LetV = d+6 inthelocal trivialization. SinceY, a] = da+[0, @] € I'(CL(£)), and since
da, the differential of a PDO, also lies ifi(CL(£)), it follows that P, ] lies inCL(M, E)
pointwise. Using again the fundamental property of the canonical trace, one shows

1
0 —
tr<[0, ] = ord0) req[log Q, f]a). (7.4)
Combining(7.3) and (7.4pives
1
0 —tr@ _
dtr¥(a) = tr¥(da) ord(0) rega dlog Q)
1
— 110 _tr@ _
=tr2([V,a]) —tr¥(0, a]) ord(0) rega dlog Q)
1 1
— tr@ _
=tr“(V,a]) + ord(0) req[log 0, f]a) ord(0) rega dlog Q)
—tr9([V, a]) — —— res[V, log Q}). 0

ord(Q)
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The residue term i(7.2) is the source of the infinite dimensional obstruction to identi-
fying the first Chern form of a superbundle with (minus) the curvature of the determinant
bundle.

Theorem 3. Let(E=ET® &£, L =L+ & L) be a half-weighted super vector bundle
with connectionv® over a manifold B. The curvatur@Pet# of the associated determi-

nant bundle differs from the Q-weighted first Chern foﬁﬁ’” of (5.8) on the weighted
superbundl€&, 0 = L?) by a Wodzicki residue. More precisely, ff, N € T, B we have

QP (M, Ny = —R2" (M, N) + RSV (M, N),

with

2ROV (M, N) = res(log Q, L™V, LI L7YVE, L] — L-YVE, L]

1
ord(Q)
[V4,. log 01 + L7YVE,, L] - [V4, log Q]).

Proof. We follow the proof ofLemma 1 replacing traces by renormalized supertraces and
keeping track of obstructions due(ft.1) and (7.2yia Wodzicki residues. Dropping, we
obtain

22P% (M, Ny = d(stré (LY VE, L) (M, N)
= —str¢([L7YVE,, L], L7YVE, L] + st (LY 2¢M, N), L))

redLYVY, L] - [V§;, log 0])

1
" ord(Q)

1 -1
Ord(Q) rexLYV4,, L] - [V, log 0D,

using(7.2)and calculating as i(6.5). Thus

200 (M, Ny = —2st2(Q2¢(M, N))

1 C1poE Ao
+Ord(Q) regflog Q, L™ [Vy,, LIIL™ [V, LD

1 -1 £
ord(Q) req L [VN,L] [V, log O]

1
ora) L Yv§,. L1 -[V§. log QD).

using(7.1). O
7.2. The heat kernel approach

Here we deform the weigh® = Qo = L? to a one-parameter famil@o + Q1. & > 0
via a deformation of the superconnectigfiinto a family VZ of Bismut superconnections.
We need a preliminary formula.
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7.3. Volterra series

Let 0 = Qo+ Q1, whereQq is a positive elliptic operator of strictly positive order, and
Q1 is a PDO of order strictly less than that . We have

e—c(Qo+01)

o0
= Z(—s)k f e_UOSQOQl e“’ngOQl, ..., 01 g—ok& Qo dogdoy, ..., doy,
k
k=0 A

whereA* = {09, ..., 01 > 0: Zf:o o; = 1} [5, (2.5)] We can avoid convergence issues,
since we will only be using a finite number of terms. In analogy with the notati¢hQh
we set

(Ao, A1, .-, Ak)ek.00
= / Str(Ao e_"osQOAl e_"ngOAz - Ag e_g"EQO) dog doy - - - doy,
Ak

for PDOs Ay, ..., A} acting on sections of the model bundieof £. The supertrace is
clearly finite fore > 0. The Volterra formula implies

o
str(A e (@t V) = ¥ () (4, 01, ..., Q1) k.00,
k=0

for any PDO A.
7.4. Bismut superconnections

Starting from a half-weighted superbundie= £ @ £, L) with a metric supercon-
nectionv¢ = V+* @ V —, we form the one-parameter family of superconnections

VE =V 4 eL,

for e > 0[3]. For any one-parameter family of superconnectiansve have the important
transgression formutgor an analytic functiony,

d 2N\ d V4
g S Ad) = d <str <EA,f (At)>> . (7.5)

The derivation of this formula if5, Proposition 1.41kssentially relies on the fact that
d(str(a)) = str[A, «] for Hom(¢, &)-valued one-formsr. Thus in the proof below, we
avoid the obstructions t$.1) and (6.2)for the weighted supertraces $tr

Proposition 4. Let (€, L) be a half-weighted superbundle with connecfithover a man-
ifold B. Fore > 0 we have

QPetee — ch(VE)p = —r2® + o(1, [VE, L], [VE, L1e.2.00,

where Q¢ = L2, rlQ’5 = str?°(2¢) is the weighted first Chern form &f¢ as in (5.7)
2Petee is the curvature oWPeé¢ as in (4.1), and ch(VL)z) = strexp(—(VE)?)z is
the degree two component of the Chern characte¥ fof
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Proof. We first compute the degréepiece of the Chern character f in two ways. On
the one hand, since

(VEY? = £Qo + Ve[ Ve, L] + (V¥)? = £(Qo + Q1)
with Qo = L?, Q1. = (1//2)[VE, L] + (1/¢)(V%)?, by the Volterra formula we have

ch(Vhp =Y (=e)[(1, Q1e, .-, Q1e)e.j.00] - (7.6)

Jj=0

As promised, we need only consider a finite number of terms in this sum.
On the other hand, we have

©rd
ch(VgL)[k] = str[exp[—(VSL)z]] K] = str/ [E(exp[—(vf)z)] dr
€ [£]

/ —[str(exp[ (VEYD] g dr.

Applying the transgression formu({@.5)to f (x) = e™*, we get

ch(vh = /:od [str((%V}) exp[—(V,L)Z]ﬂ[kl] dr
1 o0 L
==d / str(—e —VL2>dti|

=—d/ o~ t) (L, O1s,..., 01,0)1,j,00l[k-1]- (7.7)

Combining(7.6) and (7.7)/ields

o]

Z(—e)-’[ (I, Q1er -, Q1e)e.j.00lN]

t
= —d/ ( ) (L, Q1s -\ Q1)1 00l (k—1]- (7.8)
SinceQg = L?, we have
1 1
QPSS = S d(str(L THVE, L]e %) = —5 / — str(L [V, L]e ™' ®) dr
1 o
= Edf str(L[V¢, L]e ') dr = / (L, [V, L])i.1.0, dt
1 oo
=—d[/ \/;<L7Q1,t>t,l,Qodt:|
2 L [
1, (] < (1)
=__d/ Z( ) <L7 Ql,ta‘~'7 Ql,f>[,j,Q0 dt. (79)
20 s &
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We used L, Qo] = 0 in the second line, and the last equality follows since the only term
of degree one in the infinite sum is the integrand in the next to last integrdlz.Byand
(7.9), we see thaPetée = —ch(VL).

Finally, by (7.8) and (7.9)we get

@betee — (1 (vH2), 1.0, + &1, [VE, L], [VE, L])e.2.00
= —str(2€e~*20) + &(1, [V, L1, [V¥, L])e.2.0o,

which finishes the proof. O

Remark. In fact, (7.8) vanishes fok odd, since the integrand is the supertrace of an odd
operator, and hence vanishes.

By taking the renormalized limit ifProposition 4we obtain the following theorem.

Theorem 5. For anyu € R, the renormalized first Chern forle’“ defined in(5.8) and
the curvature2Pet# of the determinant line bundle are related by

2P = Lim#_ ch(VE)p = —RlQ’“ + LimH (e (1, [V, L], [V, L])e.2.00)-

Our approach differs somewhat froM], as Bismut and Freed calcular@Pet? as
Lim? ,ch(VE) 2, whereVE = V& + e1/2L 4 ¢ ~1/2A; is the Bismut superconnection
(for an explicit termA» of degree two). The proof d?roposition 4applies to%L; starting
with (7.7), we have additional terms involvind>, which do not contribute t&2Pet#, the
k = 2term in(7.7). Therefore, the degree-two pieces of the Chern characters of the super-
connectionsvX, VL both compute the curvature of the determinant line bundle, although
the higher degree pieces differ. In the next paragraph, we will relate these expressions.

7.5. Bismut—Freed connections

For the connection on the infinite dimensional burtite £* @ £~ considered ifi4], we
can say more about the renormalized first Chern form. A8.i4h), we consider a fibration
n . Z — B of manifolds, with fiber an even dimensional spin maniféfg, » € B, and
with finite rank Hermitian bundleg® with unitary connections ovex. The Levi-Civita
connectionv for a given metric orZ and the associated orthogonal horizontal splitting
T.Z = TyM, & Hy, for x € 7 ~1(b), induces a connectio¥’ on F, the tangent bundle
along the fibers ofr by

vl = pTMyLG, (7.10)
where P™ is the orthogonal projection t&. We lift V¥ to a connection on the spinor
bundleS = S ™ @ S~ associated t&. For an auxiliary bundle with connectid# on Z, we

set = £T @ £, a bundle oveB with fiber H* (M,, (S* ® W)lm,) for E*. The induced
connectionv on E = § ® W in turn induces a connectiov on & given by

(Vyh)(b)(x) = (VL) (x), (7.11)
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whereY is the horizontal lift ofY € TBto H,. This connection need not be unitary, but
it is shown in[4] that adding the divergence of the volume formxaih base directions
to the right-hand side df7.11) produces a unitary superconnectigh, the Bismut—Freed
connection ort.

We claim that the curvature for®* for V¥ is an endomorphism in the fibers:

2} € A2(Hom(S ® Wlu,. S ® Wiu,)).

First, the local nature of the Bismut—Freed connection show thatdfI"(£) has support
in U x V, whereU is a open set irB andV is an open set containingin = ~1(U), then
Vi also has support ity x V. This implies the same result f6&“ (X, Y), a combination
of first and second covariant derivatives\of. Sinces2* is tensorial, after multiplying/
by bump functions with decreasing support in base directions, we can ghrink’ to the
point 5. In other words(2“(X, Y)¥)(x) is determined by2“(X, Y), and v (x) alone.
Sincef2" is linear, it must be an endomorphism in the fibers.

This allows us both to compute the renormalized first Chern mﬁn: stré (2%) and to
relate dstr? (22%)) and st€ ([V¥, £2*]) = 0. HereQ = L2, with L a first-order differential
operator as i1f3.3). SinceQ (which in[4] is the square of the Dirac operator in the fibers) is
a second-order differential operator, we have the asymptotic expansion for the heat kernel
e (g, x, x):

J
1 .
oCe.x.x) = oG | 2 @@+ 0T
i j=—dimM

a;(x) € Hom(E,, E,) is locally computable from the metric af;, atx and the symbol
of Q atx. 2" is an endomorphism ang@ is a differential operator, so §2* €¢) has

an asymptotic expansion inwith no logarithmic terms, and $(2*) = str¢-*(2%) is
consequently independentof In fact, by the standard “remarkable cancellations” of local
index theory, stf2* e¢2) is O(1) as= — 0. Thus we can replace Lmo in the definition

of the renormalized first Chern fore = RZ" by an ordinary limit:
RZ =str?(2") = lim str(2" e°?) = lim f str(2“ €2 (e, x, x))
e—0 e=0/m
St (2" a(x)), (7.12)

= (4r)dm ) 2 /M
where we have used th&" is a homomorphism in the fibers. Also,

(4m)@MM)/2 § st (2
=d / Str(2%ap(x)) = f str([V, 2%ap(x)])
M M

_ / Str(¥. 2o + 24[Fy, ao)]) = / (2" [ ).
M M

Thus the obstruction tchQ = str¢(2*) being closed is given by the integral of
Str(2"[ V., ao]). The integrand is a local expression except in its dependentg.on
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Corallary 6. In the Bismut—Freed setting of a fibratian: Z — B as aboveassume that
the metric onr ~1(») is flat and the connection on E is flat in fiber directionsdn(s).
Then the Bismut—Freed curvature at b reduces to a Wodzicki residuan the notation of
Theorem 3,

Petupy Ny = RSV (M, N)

Proof. Sinceag = 0 under the hypotheses, it follows frofn.12) that the terleQ‘“ in
Theorem 3 vanishes and hence only the residue terms remain. a

The significance of the Corollary is that the curvature of the Bismut—Freed connection
on the determinant line bundle of a family of Dirac operators, given by

QDGL‘):U A(.QF)ch(.QW)} , (7.13)
M [2]

does not have this vanishing property; he€ is the curvature o’ . Thus Theorems 3 and

5 split the Bismut—Freed curvature into two terms. The first terRiQ"‘ = —stré(R"),

the analogue of the finite dimensional curvature, is localized on the fiber in the sense of
the Corollary. The second obstruction term is a Wodzicki residue, which by Wodzicki’s
work is locally computed from the symbol of the (non-local) PDOs in Theorem 3. Thus the
Bismut—Freed curvature breaks into two terms with locality properties in these technical
senses.

Remark.

(1) We can define a Chern character formE§strQ(Q")/k! for weighted bundles, and
hence Chern forms via Newton’s formulas. These forms will not be closed in general,
and their significance is unclear.

(2) Theorems 3 and&mpute the infinite dimensional obstruction to the finite dimensional
equality of the curvature on the determinant bundle with (minus) the first Chern form on
the original vector bundle. The different looking obstructions in these theorems are re-
lated by the factthatrenormalized limits of expressions of the@pd 1, . . ., Ax)x.e, 00
can be expressed in terms of Wodzicki residues. More precisely, in Appendix B we show
that the coefficients of divergent terms in the asymptoti¢g div¢, L], [VE, L])c.2.0,
ase — 0 are combinations of Wodzicki residues.

(3) In fact, Proposition 4is a more refined result thafheorems 3 and.9ndeed, zeta
function regularization at zero only detects logarithmic divergences, while heat kernel
regularization keeps track of all divergenceg iim fractional powers of.

8. The Bismut—Freed connection and the curvature of the deter minant bundle over
the manifold of almost complex structures

In this section, we apply the theory 8kction 7to study the Bismut—Freed connection
on the fibration associated to the string theory example of diffeomorphisms acting on the
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space of almost complex structutdsA) on a surface. We show that this connection agrees
with a classical connection in Teichmuiller theory, and we compute the renormalized first
Chern form for the infinite dimensional bundle.
Let A be a smooth closed Riemannian surface of genus greater than one, and fix a Sobolev

indexs > 1. As inSection 2 Example (iii), we set

ET = A(A) x HSTH(T 4),

E™=TAan = |J (HeH T{4),JH=-HJ}.

JeA(A)

8.1. Almost complex structures on the bundlés

Each of the real bundle$* over.4(A) has an almost complex structure. ®H, the
almost complex structure is defined on the fiber ahbwe A(A) by J itself:

T w)y=du  ue HTHTA).
Similarly, the action
J;(Hy=H-J, He T; A% (A)

is an almost complex structure & .
Let M? ;(A) be the space off* Riemmanian metrics oA with curvature—1, and set
DA (A) > ML(A), @) =gy, (8.1)

whereg; is the unique Riemannian metgg on A with curvature—1 in the conformal class
defined byJ. @ is a diffeomorphism between the Hilbert manifold$(A) and M?* ;(A),
and the derivative of at J in the directionN is given by(D;® (N))ap = (g7)ac(Ny);,
[20]. Fora; as in(3.1), the operator

Py=Py, =D;®oayoDg,d L (8.2)

plays a fundamental role in the Faddeev—Popov procedure for string theori¢]jsee

Lemma7. The bundle map : £ — £~ defined in(3.1) is compatible with the almost
complex structureg * in the sense that

ay(Ker(J;" — i) = Ker(J; —i),
ay(Ker(J; +1)) =Ker(J; +i) VJ € A(A).

Moreover o is a first-order elliptic operator

Proof. We first show thatv; is first-order elliptic. In isothermal coordinates fgr the
complexified operatoPg is [1]

-9 0 -0 a
PC 7z ) = 9.ut d sut— @ dz, 8.3
g(uaz+uaz> Zu32® z—i—ZuaZ@z (8.3)
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soPé? = d@®d whered is the Cauchy—Riemann operatBy, is therefore first-order elliptic,
and hence so i, since its principal symbol differs from,,’s by the isomorphisms in
(8.2). i

Itis easy to check that Keﬂf —i) = {u*d/dz} and Kel(jjr +1i) = {u*d/9z}, and that

Ker(J} — i) = {HZZ;—ZdZ} L Ker(J; +i) = {Hja%dz} .

Indeed, sincg] = J2 = 0 andJ} = —1 in isothermal coordinates, we have
(J;H): = (H): = 2(H)F —i(H)D) = 3(HiJy —iHyJ?) = $(—H{ — iH))
= -Li(H) —iH}) = —iH].
Similarly, (J," H)? = iH>. The lemma then follows frort8.3), since

u e Ker(J;m —i) = u* = 0= (P, ): = 0= Py, (u) € Ker(J; —i). O
8.2. Hermitian metrics o8 ©

£7 have thel.? Riemannian metricg* given be(3.2a) and (3.2hwhich are compatible
with the almost complex structurgg®. Indeed, for tangent vector fieldsv on A, we have

(JTTu, T ) =Qud) ] = (u,v)],

sinceg; is compatible with/. Similarly, for (1, 1) tensorsH, K on A, we have
THT K = MK = [ disoutark”) = [ duswrtiko),
A A

sinceJ* = —J andJ2 = —1.
Using the family of elliptic operatorsQ ; = Qjr ®Q; =aja; ®ajay, J € AA)},
we haveH* metricsy** defined on the fibe:fﬂ; aboveJ by

(u, 0)5F = ((0F + Du, v)T = (QF + 1°"%u, (0F +1)*/2v)%. (8.4)
8.3. Connections of*

We now defind.2 and H* connections o& *. As £t is trivial, letV*+ = d + 6 + where

0T (N) = ZNJ, (8.5a)

for N € T;A(A), J € A(A). HereNJ acts onu € HPL(T A) by NJux) = N(x) -
J(x)(u(x)), with “.” denoting matrix multiplication. Sinc#/, J € C°°(T11A), multiplica-
tionbyNJpreservegl*+1(T A), sod TisaHom H*t1(T A), H*+1(T A))-valued one-form
on A.

The local charts on the manifold4®(A) and A(A), given pointwise by the matrix
exponential map as iBection 2 induce a local trivialization o€ ~ over the base space
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A(A) with fibersT; A*(A), J € A(A).Inalocalchartafl € A(A),wesetV ™ =d+6,
with

9~ (N)=—3J(N,} (8.5b)

for N € T; A(A). Here{M, N} = MN + NM. 6 ~ is a Hom(H* (T{ A), H* (T} A))-valued
one-form onA(A), since we again matrix multiply eIementst(TllA) by elements in
C°°(T11A). This connection corresponds to the “algebraic connection” defirf20i(5.6)]

Lemma8.

(1) V* are compatible with thd.2-metricsy® and with the almost complex structures
J* in horizontal directions. In other words, the? superconnectiorV is Kéhler in
horizontal directions

(2) V&* = (QF + 1) 5>V E(Q* + 1)*/? are compatible with theéZ*-metricsy** and
with the almost complex structurgs™ and.7 ~ in horizontal directions. In particular,
the connection

V="V "1+1Q VS~

is Kahler in horizontal directions

Remark. Itis shown in[20, Theorem 5.2.2fhat in horizontal directionsy — equals the
L2-Levi-Civita connection on the manifold of almost complex structures.

Proof.

(1) The compatibility ofv ~ with 7 —, y ~ is shown in20, Theorems 5.2.1 and 5.2.2Ye
adapt this proof t&7 + and refer the reader {@0] for details.
To prove the compatibility o + with y T, first note that the derivative of the map
g — g sending a Riemannian metrgcon A to the corresponding volume from,
vanishes in the direction of a traceless covariant two tensor. Indeed, w®have) =

%trg(h)p,g = 0. For any horizontal vector fieltf atJ, we sets = D;®(N), for @ in
(8.1). n is a traceless covariant two teng@0, Theorem 2.5.6]Foru, v € I'(€™), we
have

N(M,U>;r :I’l/ d/’nggJabuavb
A
=/ dugjnabu“vbntf dugjgjabDnuavb+f dug, 811" Dy?
A A A

- / dig, 87ac NG uv” + (Dyu, v) F + (u, Dyv)}
A

= (NJU v)J + (Dyu, ) + (u, Dyv) |

1
T2
= (Viu,v)} + u, Vyv) . (8.6)

1
(NJW ) )" = S (u, INv) 7+ (Dvue, v) 7 + {ut, Dyv) 7

where we have useiN = —NJandN* = N.



S. Paycha, S. Rosenberg/Journal of Geometry and Physics 45 (2003) 394-430 419

For the compatibility with the almost complex structyre, we have
[V, T = DyQu) + $NFPu — IDyu — 3INI= Nu— INu+ 1/°Nu=0.
(2) This is a straightforward consequence of (1), once we check the compatibiti,tyF of
with the almost complex structureﬁ, which follows fromLemma 7 O

8.4. A half-weighted vector bundle

The bundle
Hom(ng,l,O’ 57,1,0) = (5‘4’,1,0)* ® 87,1,0

now has a connectiol® = (V>")* ® 14+ 1 ® V*~, which is horizontally Kahler. In a
local chart, we hav®® = d + 6% = d + 6%~ — 6%, so we can equivalently vieW* as a
superconnection on the superbundle

gL0 = g+10 o £—10 (8.7)
The family
0 L; =0
10 _ 7
J—> L7 = Lz ! )
Ly=9; 0

whered; is the Cauchy—Riemann operator fod, J), defines a section of the bundle
Ell(EL0). By Lemma 8 Lﬁ’o is a self-adjoint elliptic operator for the Hermitian product
built from the almost complex structwg= J @7~ and the scalar produ¢t ~)J;ea (o7
(cf.[1,20]for a string theory perspective). Th&-C, L1-9) is a half-weighted vector bundle.
0*10 = LFL* are positive self-adjoint sections of BI*1-0). Here LT is either theL?

or the H* adjoint of L* with respect to the inner products (8.4). This data determines a
weighted superbundig?, 010 = 9+10 g 0—1.0),

8.5. The first Chern forms ¢f+1.0

Lemma 9. Let (£, Q) be a weighted vector bundle with an almost complex strucfure
compatible with Qi.e. 07 = J0), let (£%9, 019 denote its(1, 0) part, and letA e
I’ (CL(&)) satisfyAJ = JA. Then

r2"(AL0) — r2(A) +itr2(JA).
Proof. Let AL0 be the(1, 0) part of AC, the fiberwise complexification of with respect
to J. Itis standard that t41-9) = tr(A) +itr(JA). Then
r2"° (A1) = Lim. o tr(412(Q%) =) = Lim.__o tr(AQ™)™)
= Lim,_otr(AQ %) +iLim,_otr(JAQ ™)
=tr?(A) +itr?(JA). O

We now compute the curvature 8F* on & *.
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Lemmal10. Fors > 1,the curvatures2*-+, of the connection¥*-* are zero-order PDOs
given by

25T (M, N)H = —3(Q T + 1) ™/?[M, NlopH (Q T + D)2,

Q2%7(M,N)H = (Q~ + 1) /2(=1[M, NlopH + 2(—MHN + NHM)

—3[{M, H} (N, H})(Q ™ + )*/?,
for M, N, H € T; A(A).
Here [M, N]op denotes the multiplication operator in the fiber oveassociated to the

bracket (pointwise oven) of the matrices\f, N. In contrast, M, N] denotes the bracket

of vector fields ond which are given by local extensions of the tangent veckrsv at J.
At a fixed J, we may extena/, N so that M, N] = 0.

Proof. We prove the first equality only, since the second is similar. Usihg) = M,
IM = —MJ, J2 = —Id and similar formulas foN, we have

25T (M, N) = (V"H2M, N) = [V, Vi1 = Vi
= (@1 + DAV, VAT = Vi@ T+ DY?
= QT+ DAOTM,N)+0T AOT(M, N)QT +1)*/?
= (Q@F + D TAMOET(N) = NO T (M) — 67 (M, N])
+OFAOT(M N)(QT + 1)V
= (Q" + D) 7/3(=3[M, Nlop + 3IMILNI)(Q * + 1)*/?
= (Q@"+D7A(=5[M. Nlop)(QF + D)2 0
Proposition 11. The weighted first Chern foranQ on the weighted vector bundle

(&0, 019 with the connection¥* is independent of the parameterused in the renor-
malization procedure and independentaf 1. For M, N € T; A(A), we have

RZ(M.N) =itr®” (3J[M, Nlop— 3(~M ()N + N()M) + JI[{M, }. (N, }])
+3itr 2" (J[M, Nlop).
The traces are taken with respect to ftfeinner products. Note that, in agreement with

Corollary 6 the curvature on the associated determinant bundle i@ theighted trace of
a multiplication operator.

Proof. By Lemma 7 Q@+ commutes with the almost complex structure, so(th®) part
5HL0p1 Ny of 251 (M, N) satisfies2*+10(Mm, N) = (2% (M, N)LO. Applying
Lemmas 9 and 10ve find
1,0
trs@" 1 (25 HL0(M, Ny) = trs@ (@5 (M, N)) +itrs@ (T 25 (M, N))
= —1itr@ ([ M.N]op).
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Note that tr§+’/‘(QS’+(M, N)) = 0, since the curvature form is a skew-symmetric endo-
morphism for fixedW, N. The H* trace trs defined via the inner produ;c;t')j”r in the first
line equals thd.? trace in the second line, because the powers)*¢/? cancel in the
computation of trs. Similarly, we obtain

trsQ’l'Os”(Q'*"*’l’O(M, N))
=trs¢ H(2%7 (M, N)) +itrs® *(J; 2% (M, N))
=itr® #(3J[M, Nlop— 3(=M(ON + N(OM) + 3(J{M, -}, {N, }])
For a differential operator, there is no logarithmic divergence in the asymptotics of
tr(Ae—¢2) ase — 0. Sinceu keeps track of the logarithmic divergence, the renormalized

traces above are independen.of
The result now follows fronfeq. (5.8) a

Remark. A matrix H € T; A®(A) satisfiedHJ = —JH so two such matrice#, K satisfy
HKJ = JHK. Writing

2]

in isothermal coordinates, we see thi is of the form

5L

as is any even product of matricesfinA’(A). HenceJ[M, N]qp is of the form

y 8
-5y ’
In contrast to an incorrect claim [47], trQ+’M(J[M, Nlop) need not vanish.

8.6. VT and the Bismut—Freed connection

We now show that the connecti&n™ of (8.5a)coincides with the Bismut—Freed connec-
tion associated to the string theory fibratidn— (A x A)/D — A/D, whereD = Diff g“
is the (Sobolev + 1) isotopy group ofA. It is equivalent to work with the trivial fibration
A —-> A x A — A, and to consider only directions perpendicular to the actio® oh
A x A with respect to the natural metric.

G, )12 = [1R1Z, + 1013, (8.8)

whereh € T A, v € T A and the projectiomr : A x A — A hasz(x) = J. Note that the
role of V ~ of (8.5b)is implicit, since it is the Levi-Civita connection for the metric .
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Let VL€ be the Levi-Civita connection o x A for the metric(8.8). By (7.10), for
W € I'(T A), we must show that

v,y = PTAVECy, (8.9)

where P74 is the orthogonal projection df (A x A) to T A. By the six term formula for
the Levi-Civita connection, we have
2(PTAVCy, v) = 2ViCy, v) = h(y, v) + Y (b, v) — vl ¥) + ([h, Y], v)
+<[U, h]9 I//) - ([I/fv U], h) (810)

On the right-hand side dB.10) we may extend, v arbitrarily nearx, so we choosé to
be horizontal and to be vertical neax. Then

(h,v) =(h.¥) =0 (8.11)
in (8.10)
Let ¢, be the vertical flow ob. Then
h _ (9 Uil = Y kb
<[U, ]a 1,0) - <E —o ¢—t,* ) W> - E —o ((p—t,* s lﬁ)
= (b, [=v, ¥]) = ([¥, v], h); (8.12)

sinceD preserves the volume measurec, we may move dd: past the inner product in
the first line. Combining8.10)—(8.12)ives

2APTAVECY, v) = k(v v) + ([h, ¥, v) = (V, ¥, 0) + (¥, Vo) + ([h, Y], v)
= (h(¥), v) + (¥, h(v)) + ([h, ¥]. v),
where we have used the third ling(8f6)in the lastline. Moreover/, ] = h(y)—y (h) =
h(y), sinceh € T. A may be lifted to be constant in vertical directions. So we finally obtain

2(PTAVECy, v) = 2(h(y), v) + (hJ, v) + (¥, h(v)) = 2(h (), v) + (hy, v)
=2(V, 'y, v),

since the extension of may be taken to be constant in vertical directions, and so
h(v) =0.
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Appendix A. Superconnection formalism

This appendix summarizes the superconnection formalization usgekciion 6 Useful
references argb,19].

A.1. Super vector bundle valued forms

A super vector bundl€ over a manifoldB is aZ, graded vector bundlf = £T @ £~
over B. Let £2(B, &) be the space of-valued differential forms orB. Since$2(B, &) ~
£2(B) @cpy I'(£), wheres2(B) is the exterior algebra of forms aB, an element of
£2(B, &) can be written a® ® o with w € 2(B), o € I'(£). TheZ grading ons2(B)
induces &, grading on2(B) = 2 T(B) ® 2 ~(B) into forms of even and odd degree,
which, with theZ, grading or€, yields aZ, grading on2 (B, £) = 2 (B, £)® 2 (B, &),
where

QRTB,E=RTB,ENDR (B,E), 2 (B, E=RT(B,E)D N (B, EN).

A.2. From a connection to a one-parameter family of superconnections

A superconnection is an odd first-order differential operstor2* (B, £) — 2F (B, £)
which satisfies the Leibniz rule in th®& graded sense:

Vio®o)=do®o + (-1 w® Vo.
A connectionV on £ which preserves thg, grading defines a map
V:IEHC L2EB.E) - IT*BeE*) c 2F(B,E),

which extends uniquely to a superconnectior€on

The Z, grading on€ induces aZ, grading on the bundle Ho(f, £) = Hom™*(£) @
Hom™ (&), where the even bundle maps, the sections of H@m, preserve th&, grading
oné&, and the odd bundle maps, the sections of Ha#), takeE * to £F. A sectionL of
Hom™~ (&) induces an odd map

L:Q2%B,E)—> 2FB,E), 000~ (-1 we Lo.

V andL induce a one-parameter family of superconnectifs= V + /7L, ¢ > 0, on&.

A.3. From a superconnection @hto a superconnection oddom(é&, &)

A superconnectiolV on £ induces a connection on Ha# £) defined by
[V,A]l = VA — (-1)41AV,

where|A| =0if AisevenandA| =1if Aisodd. IfA =L € I'(Hom~—(£)) andVis a
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superconnection induced byZa grading preserving connection énthen

[V, Ll(w € o) =V(L®0)) + L(V(e Qo))
=V(-1)“o® Lo) + Ldo ® 0 + (-1l @ Vo)
=D do® Lo+ (-1t do® Lo + (-1)?“lw @ VLo
+(=1)2°Hly @ LVo = 0w ® [V, L]o.

In the last line, the bracket is an ordinary bracket.

Appendix B. Trace formsand Wodzicki residues

In the appendix, we express the divergences in the asymptotics of the trace forms
(Ao, A1, ..., Ak)e.k, 0 8Se — 0interms of Wodzicki residues. Such arelation is suggested
by Theorems 3 and,%vhich compute the obstruction to the equality of the determinant cur-
vature and the renormalized first Chern form alternately as such a divergent term and as a
Wodzicki residue, respectively. Such trace forms have occurred in quantum algebras stud-
ied by Jaffe et al[10] and in local index theory in non-commutative geometry treated by
Connes and Moscovi¢v].

B.1. Notation

Forj e NandA, Q € CL(M, E) such that the) has scalar top order symboJA[jQ €
CL(M, E) is the operator defined inductively by

[A1y =4, [Al)" =[0.[A4]})

We will often drop the subscrip@, and use notation from the body of the paper. Notice
that the operatorA]’Q is of ordera + j(¢g — 1) wherea = ord(A), ¢ = ord(Q), and that

[Al!, = e/[A]}, foranye > 0, j € N.

LemmaB.1 ([14], Lemma 4.2).If p, e, N > O satisfy((N —a)/q) — p — e > 0,then

N,l( t)]

—tQ 4 _ — J o—tQ

e A_.Eo_j! [A]Qe + Ry(A, O,1),
J=

where forany: > Osuch thatQ +cisinvertible, there exist§ > Osuchthat|Ry (A, O, 1)-
(Q +o)?| < CtWN-a)/@)=p=¢

Lemma B.2. Given Ag, A1, ..., Ay € CL(M, E) and jiy < N; e N, there existNy,
No, ..., Ny_1 € Z such that forj; < N; andg; € {0,1},i = 1, ..., k with at least oney;
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unequal to one, the operator

Ao(Ryy (A1, Q. 00) ™ ([A1] )™

i 1—(1,'
X o (RN,. <A,~, 0,00+ ZOQGI)) ([Ai]jé)af

=1

k 1—o
X o <RNk (Ak, Q.00+ Z%‘@')) ([Ak]]Qk)a" (B.1)

i=1
is trace-class with trace bounded by

X j A=aj)(Nj—a;)/(g—p)))

C- l_[ oo + Zaiaj
j=1 i=1

for some positive constant C

Proof. We proceed by induction an Fork = 1, there is an integesg such thatdgQ ~P0
is trace-class. Byemma B.1we can choos&/; such thatD”o Ry, (A1, Q, op) is bounded

by
CO_é(Nl—al)/‘])_PO’ (B.2)

wherea; = ord(A1) andC is a positive constant. ThefigRx, (A1, Q, o) is trace-class
with trace bounded by an expression simila(Ba2).

We now assume the lemma through- 1 for the induction stepC will denote a con-
stant which may change from line to line. Bgmma B.1 there existsVy € Z such that
Ry, (Ar, Q.00+ Y¥_, ajo;) is bounded byC (o0 + Y X_; aioy) Me—a)/4, Foray, = 0, by

induction we can choos¥y, ..., Ny—1 such that
. kil .
Ao(Rn, (A1, O, ao))lf"‘l([Aﬂle)‘)‘l Ry, (Ak—L Q.00+ Zalm) [Ae-1l™
I=1

is trace-class with trace bounded by

(A=a;j)(Nj=a;)/(q—pj))

k—1 j
¢ [+ e
j=1 i=1

It follows from Lemma B.1lthat Ry, (A, A, oo + Zf?_laiai) is bounded in norm by
C - (o0 + Y5 ajo;)Me=a)/4 Hence(B.1) is bounded by

k1 j A—a;)(Nj—a)/(g—pj))

k (Nk—ar)/q
C- ao—i—Zaia,- . <oo+Za,~6,-> .
j ] i=1
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Now assumey;, = 1. We can choose;_1, Ny—1 large enough thaQ —Pkfl[Ak]’é‘ is
bounded and(Ny_1 — ax—1)/q) — px—1 > 0. ThenLemma B.limplies

k—1 ((Nk—1—ar-1)/9)—pr-1
<C <0'0+ZOIZO'I> .

=1

=1

k-1
RNk—l (Ak17 Q’ (O—O_'_Zalo—[) ka_1>

If ax—1 = 0, this estimate and the lemma for- 2 produces the upper bound

k—2 j (A—aj))((Nj—aj)/(q—pj)) k—1 ((Ng—1—ar-1)/9)—pr-1
C-l_[ oo—{—Zaiai . (Go—i—Za,-G,-)
j=1 i=1 i=1

for the trace. lfay_1 = 1, there existpy_2, Nx_2 such thatQ ‘f’k—Z[Ak_l]jQ"’l[Ak]ij is
bounded and(Nx—2 — ax—2)/q) — px—2 > 0. Applying the above procedure gives the
desired estimates. O

Proposition B.3. LetAg, Ay, ..., Ay € CL(M, E). There existV1, No, ..., Ny € Z such
that fors > 0.

(Ao, A1, .-, Ak) Je k0

Ni-1 Ne=1 Ejl+ “+jn

/ f( 1)1k (0) 2 (o0 + 01)72

Y
= 1t !

- (00 + 01+ -+ + ok tr(Ao[As] 3 - [Ax]% €7°9) dog - - - doy. + O(e).
Proof. IteratingLemma B.1 we find

(Ao, A1, ..., AR)ek,0

Jitt
Z Z( 1t fkg e / / (00)* (00 + 01)”
j1=0 Jn=

(00 + o1+ + o) tr(Ao A1l - [Acld €79) dog

o dJk + RN]_,NZ ..... Nk (8),
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,,,,, N, (¢) afinite linear combination of terms of the type

o1

- (—00)”t
/ tr | Ao(R, (A1, Q, o)) Z (A1)}
oo+-+0x=1,0;=0 j1=0 J1!

a2

No J2 .
X (Ryy(As, 0, optee [ 3 (0t 1o By e

|
J2=0 2

N, ] Jk
B " (—(00 + @101 + - - - + akox)) ¥ [Ax]
< (R (An, Qo)™ | I 2
jn:O ’

« @—¢ot+—anort-+(1l-ar)or) 0 dog - - - doy,

withe; equaltoOorl, antxs, ..., a,) # (1,...,1). ByLemmaB.2 N1, No, ..., Ny can
be chosen so that the integralsRiw,, v,,... v, (¢) converge an®Ry, n,,... n, (€)=0(¢). O

B.2. The asymptotics of regularized trace forms

We now investigate the asymptotic behavior or the trace forms-as0.

Theorem B.4. LetAg,..., A, € CL(M, E). Then

(i) (Ao, A1, ..., An)e.n, o has the following asymptotic expansionsas> 0:

o
(A0, AL, .- Anden,0 ~ D (Ao, A, ..., Ay)s"
j=0

o
+ Z Bi(Ao, A1, ..., Ap)*loge
k=0

o0
+) (Ao, Az, ..., Ap)ek,
k=0
wherei; = (j —a —dimM)/q witha = ord(Ap) + - - - +ord(4,), ¢ = ord(Q), and
aj(Ag, A1, ..., Ay), Br(Ao, A1, ..., Ap), vik(Ao, Az, ..., Ay) € C.

(i) Forj € NwithRe(A;) = (j—a—dimM)/q < O,thereisamulti-indexNy, ..., N,) €
N such that

iAo Ao A = D Z( i JU /(

j1=0 Jn=

F((—j+a+dmM)/q)+ (G1+ -+ Ju)

X — ; doy - - - doy,
q - jilj2t- - jn!

><re:a(Ao[A1]fQl e [A,,]fQ" Q((—a=dimM)/q)—(jr+-+jn)y,

whereresdenotes the Wodzicki residue
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Remark. Assuming Rér;) < 0 ensures thalt' ((—j +a+dimM)/q) + (j1+-- -+ ju))
is well defined for all(jy, ..., j.) € N".

The proof of the theorem depends on a lemma whose proof we include for completeness.

LemmaB.b. LetA € CL(M, E)andQ € Ellord>o(M, E). There is the asymptotic expan-
sionase — 0

tr(Aet9) ~ Z aj(A)e + Z Br(A)e¥ loge + Z Ve (A)eX, (B.3)

j=0 k=0 k=0

with a; (A), Br(A), vk (A) € C,a = ord(A), ¢ = ord(Q), andir; = (j —a — dimM)/q.
For j with Re() ;) < 0 (e.g.ord(A) ¢ Z), and fork € N, we have

aj(4) = ; MDD regaq-r-=dminia)
(_1)-4reSAQ” )
(k — 1!

Br(A) =

Proof. Fors € C—{0, -1, -2, ...}, we have

“lregAQ™)

= res—otr(AQ~¢+9) = res_g (ﬁfo P rae™Q) dt>
1 1 N 1 00
=res—o| — [ £t rae @ dt+—/ £ r(Ae Q) gt
2 O(F(S)/o “eDd+ ok (“Ae ™
— Z Q) (A) S—o /llzﬂjﬂl dr
I'(s ) ' 0

o Bi(A) /1 kpots—1
+3° _ “s=llogrd
2 T res o( A t ogtdr

tZ+)\-/ +s

1
————| =T ta—gsratdmm(4) (B4
Z+)»j+s}0 (8) o—gstatrdmm(A)  (B.4)

=T ) aj(A)res—o [
J
sincer; = —siff j = —gs+a+dim M. Noticethat € —Niiff A; = (j—a—dimM)/q €
N, which does not occur if R& ;) < 0. In this computation, we use the fact that the terms
in (B.3) containing logarithmic divergences ior having integral powers of do not
contribute to the residue at= 0. Similarly, theffO term in(B.4) does not contribute to
the residue.
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Fors =1, e N,usingl"(z) = 2z = 1) -+ (z —k + DI'(z — k) andI"'(z) L ~ z as
z — 0, we find

o0
g tresAQ") =res—_g (L / 1D trae Q) dt)
'z—10Jo

B 2= @—1+D) [* 4 —1Q
=res—g ( e A t tr(Ae ") dr

RS 2. _ _ i)
kg(:)ﬂkre%:o(z z—=1---(z l+1)(z—l+k)2

-1l —-1p. 0

Proof of the Theorem.

(i) The operatoer[Al]jQ1 . [An]jQ” is a PDO of order at most + (j1 + -+ + Jjn)q,

so tr[Ao[A1]g - - - [A,]{; €7°9) has an asymptotic expansion as(B13) with 2 ; =
[(j —a—dimM)/q]—(j1+- - -+ jn)- By Proposition B.1{Ag, A1, ..., Ay)en. 0 hasan
asymptotic expansionas(B.3)with A ; = (j—a—dim M)/q.Leta;(Ag, Az, ..., Ay)
be the coefficient of*/ in the asymptotic expansion of(tto[A1]7 - - - [Anl} e—¢0)
withA; =[(j —a —dimM)/q] — (1 + -+ jn)-

(i) By LemmaB.3,if R&A;) — (j1+---+ ju) <0 (e.g. if R&r;) < 0), then

a;(Ag, A1, ..., Ap)
P+ Uat o+ )
q
X res(AO[Al]fQ1 - [An]an 0 —a=dimM)/q)=(jat--+jn)y.

Part (ii) of the theorem follows. O
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