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Abstract

The Quillen–Bismut–Freed construction associates a determinant line bundle with connection to
an infinite dimensional super vector bundle with a family of Dirac-type operators. We define the
regularized first Chern form of the infinite dimensional bundle, and relate it to the curvature of the
Bismut–Freed connection on the determinant bundle. In finite dimensions, these forms agree (up to
sign), but in infinite dimensions there is a correction term, which we express in terms of Wodzicki
residues.

We illustrate these results with a string theory computation. There is a natural super vector bundle
over the manifold of smooth almost complex structures on a Riemannian surface. The Bismut–Freed
superconnection is identified with classical Teichmüller theory connections, and its curvature and
regularized first Chern form are computed.
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1. Introduction

A finite rank Hermitian super vector bundleE = E+ ⊕E− has an associated determinant
bundle Det(E ) ≡ (DetE+)⊕ DetE−. A connection∇E onE with curvatureΩE induces a
connection∇DetE on the determinant bundle, with curvatureΩDetE = −str(ΩE) equal to
minus the first Chern form on the original bundleE.
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In this paper, we investigate whether this property carries over to infinite rank bundles
of physical interest. The immediate problem is that str(ΩE) involves a divergent sum. The
paper breaks the problem down into two parts: (i) constructing the determinant bundle
associated to an infinite rank superbundle, following[4,18]; (ii) defining the first Chern
form of the superbundle, and relating it to the curvature on the determinant bundle.

As background, Quillen[18] constructed the determinant bundle with a natural metric
associated to a family of Cauchy–Riemann operators on a Riemann surface, and computed
its curvature. Later, Bismut and Freed[4] equipped the determinant bundle associated to a
family of Dirac-type operators with a connection compatible with this Quillen metric, and
computed the curvature in terms of local invariants of the underlying spin manifold. Freed
[8] considered characteristic forms on loop groups, overcoming divergence problems via
an ad hoc summation technique. In[2,15], more natural (but less tractable) heat kernel and
zeta function regularization techniques were used to renormalize divergent expressions.

While these constructions involve no regularization in finite dimensions and hence are
compatible, the regularization techniques introduce unavoidable discrepancies measured by
Wodzicki residues in infinite dimensions. The choice of technique depends on the physical
problem at hand. The Bismut–Freed definition of the regularized first Chern form is the cur-
vature of the Bismut–Freed connection, which characterizes the local geometric obstruction
to trivializing the determinant bundle, the (local geometric) anomaly. In contrast, our defi-
nition of the regularized first Chern form differs from the Bismut–Freed one by a Wodzicki
residue. However, our regularization applies to a larger class of infinite dimensional bun-
dles, such as the tangent bundle to loop groups and other infinite dimensional manifolds,
and may lead to a theory of characteristic classes in infinite dimensions generalizing[8].

In more detail, inSections 2–4, we formalize the construction of Quillen–Bismut–Freed
determinant bundles in terms of determinant bundles associated to “half-weighted super
vector bundles”. We first restrict ourselves to a class of super vector bundlesE ≡ E+ ⊕
E−, whereE± are vector bundles with fibers modeled on Sobolev spacesHs±(M,E±) of
sections of some finite rank vector bundlesE± over a closed Riemannian manifoldM. A
half-weighted vector bundleis such a superbundle together with a field/family

L ≡
[

0 L−

L+ 0

]

of odd operators locally given by constant order elliptic operators (satisfying a common
Agmon–Nirenberg condition) acting on smooth sections ofE ≡ E+ ⊕ E−. This local
characterization makes sense globally if the transition maps are themselves zero order,
grading preserving elliptic operators onM. If E comes with a Hermitian structure, as in our
main example of families of Dirac operators, we will demand thatL be self-adjoint. To a
half-weighted super vector bundle(E, L) we associate a determinant bundle Det(E, L), the
Quillen determinant bundle of the familyL+.

Given a half-weighted vector bundle(E, L), we have a familyQ ≡ L2 = L−L+⊕L+L−
of positive, self-adjoint, locally elliptic operators acting fiberwise onE. As in [16], we call
(E,Q) aweighted vector bundle. TheweightQ can be viewed as metric data on the infinite
dimensional vector bundleE, and the existence ofL allows us to viewE as a spinor bundle
with Clifford multiplication given by thehalf weightL.
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Starting in Section 5, we construct regularized first Chern forms. UsingQ, we de-
fineQ-weighted tracestrQ andQ-weighted supertracesstrQ, which are linear function-
als on sections ofCL(E ), the bundle of operators which are locally given by classical
pseudo-differential operators (PDOs) on the fibers ofE. We define theweighted first Chern
form of a superconnection∇E on (E,Q) as theQ-weighted supertrace strQ(ΩE) of the
curvature of the connection, providedΩE is a two-form with values in PDOs on the fibers
of E.

Our main results (Section 7, Theorems 3 and 5) show that the curvature of the Bismut–
Freed connection on the determinant bundle associated to a half-weighted superbundle
with connection differs from (minus) the weighted first Chern form on the superbundle by
a linear combination of Wodzicki residues (Theorem 3) or equivalently by a renormalized
trace farm (Theorem 5). This obstruction to the finite dimensional formula arises from the
non-vanishing of [∇E, strQ], a feature of the infinite dimensional weighting procedure. We
express this obstruction in two ways:

• via zeta function regularization, using weighted supertraces and evaluating the obstruction
[∇E, trQ] in terms of a Wodzicki residue (Theorem 3);

• via heat kernel regularization, using a one-parameter family of Bismut connections[3],
and evaluating the obstruction in terms of regularized trace farms (Theorem 5).

We also show (Corollary 6) that the weighted first Chern form is more local than the curvature
of the Bismut–Freed connection in a certain technical sense. In the proof of the Corollary,
we see that the curvature of the superbundle is a multiplication operator and, therefore, not
trace-class. Thus regularization procedures are necessary to define the first Chern form.

In Section 8, we illustrate the main results with a string theory/Teichmüller theory exam-
ple. Here the action ofHs+1 diffeomorphisms of a closed surfaceΛ on the manifoldA(Λ)
of smooth almost complex structures onΛ gives rise to a familyαJ : Hs+1(T Λ) →
Hs(T 1

1Λ), J ∈ A(Λ) of elliptic operators. SettingE+ ≡ TAs(Λ)|A(Λ) and E− ≡
A(Λ)×Hs(T 1

1Λ), we can view(
E ≡ E+ ⊕ E−, L ≡

[
0 α∗

α 0

])

as a half-weighted superbundle. We identify the Bismut–Freed superconnection with clas-
sical connections in Teichmüller theory.

In Appendix A, we collect some superconnection calculations. InAppendix B, as sug-
gested by the different proofs ofTheorems 3 and 5, we relate Wodzicki residues to the trace
forms of[10].

1.1. Notation

LetE be a finite rank Hermitian or Riemannian vector bundle over a Riemannian manifold
M. The naturalL2 inner product on the smooth sections ofE is defined by

〈σ, τ 〉 ≡
∫
M

〈σ(x), τ (x)〉x dµ(x),
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whereµ is the volume measure on M and〈·, ·〉x , the inner product on the fiber ofE
abovex.

We denote byCL(M,E) the algebra of classical PDOs acting on smooth sections of
E, by Ell(M,E) the multiplicative subset of elliptic PDOs, by Ellsa(M,E) the subset of
self-adjoint elliptic PDOs and by Ell+(M,E) the subset of positive elliptic PDOs. Adding
the subscript ord> 0 to these sets restricts to operators of strictly positive order. Adding
the superscript∗ restricts to injective operators.

In the following, we takes > (dimM)/2. Recall that fors > (dimM)/2, we have
Hk+s(M,E) ⊂ Ck(M,E) for any k ∈ N, whereHt(M,E) (respectivelyCk(M,E))
denotes the space ofHt (respectivelyCk) sections of the bundleE.

2. A class of vector bundles

We say that a Hilbert spaceH lies in the classCH if there is a closed smooth Rie-
mannian manifoldM, a finite rank Hermitian/Riemannian vector bundleE overM, and
s > (dimM)/2 such thatH = Hs(M,E). For example, forG be a Lie group and Lie(G)
its Lie algebra, the Lie algebraHs(M,Lie(G)) of the Hilbert current groupHs(M,G) lies
in CH.

LetCE be the class of Riemannian Hilbert vector bundlesE→ X over a (possibly infinite
dimensional) manifoldX with fibers modeled on a separable Hilbert spaceH = Hs(M,E)

in CH and with transition maps inCL(M,E). Note that these PDOs have coefficients only
in some Sobolev class. However, the PDOs in the examples below are locally given by
multiplication operators, and are as tractable as PDOs with smooth coefficients.
CX denotes the class of infinite dimensional manifoldsX with tangent bundleTX in CE.

Since the transition maps are bounded, they correspond to operators of order zero. Moreover,
the transition maps are invertible, so they in fact lie in Ell(M,E).

We now give examples of manifolds inCX and vector bundles inCE.

Examples. (i) Finite rank vector bundles lie inCE. To see this, we take as base manifold
a point{∗}, and as the bundleE the trivial bundle{∗} × Rd (or {∗} × Cd if the bundle is
complex). The transition functions belong to Ell({∗}, E) = Gld(R) (or Gld(C)). We say
thatM is reduced to a point.

(ii) If G is a Lie group ands > (dimM)/2, the current groupHs(M,G) is a Hilbert Lie
group having a left invariant atlasφγ (u)(x) ≡ expγ (x)(u(x)), for x ∈ M, γ ∈ Hs(M,G),
where expγ (x) is the exponential coordinate chart atγ (x) induced by a left invariant Rie-
mannian metric onG. The transition functions are given by multiplication operators, which
indeed are PDOs.

(iii) Let M ≡ Λ be a closed, oriented, Riemannian surface of genusp > 1, and let
As(Λ), s > 1, be the space of almost complex structures onΛ of Sobolev classHs , i.e.

As(Λ) = {J ∈ Hs(T 1
1Λ), J

2
x = −Idx, Jx preserves orientation ofTxΛ for x ∈ Λ}.

As(Λ) is a smooth Hilbert manifold with tangent space atJ ∈ As(Λ) given by[20]

TJA
s(Λ) = {H ∈ Hs(T 1

1Λ),HJ + JH = 0}.
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(The set of smooth almost complex structuresA(Λ) = ∩s>1A
s(Λ) is only a Fréchet

manifold). We determine the transition maps. The charts are given pointwise by the ma-
trix exponential map expJH(x) ≡ expJ (x)H(x). Hence the transition maps as maps on
Hs(T 1

1Λ) are multiplication operators, so they are PDOs of order zero. ThusTAs(Λ) is
in CE with fibers modeled onHs(Λ,E) whereE ≡ T 1

1Λ. In the string theory example in
Appendix B, we consider the subbundle given by restrictingTAs(Λ) to the manifoldA(Λ):

E− ≡ TAs(Λ)|A(Λ). (2.1)

E− has an almost complex structure defined fiberwise by

J −(J )(H) ≡ J ·H,
where ‘·’ denotes pointwise matrix multiplication. Notice that ifJ is smooth andH of class
Hs , thenJH is of classHs . J − induces a splitting

E− ≡ E−1,0 ⊕ E−0,1
,

where the fibers of the subbundles aboveJ ∈ A(Λ) are

E−1,0

J ≡ Ker(J −
J − i), E−0,1

J ≡ Ker(J −
J + i).

Because the almost complex structure is defined pointwise by(J ·H)(x) = J (x)H(x) for
x ∈ Λ and hence defines a PDO, the transition functions of these subbundles are also given

by PDOs. ThusE−1,0

J , E−0,1

J lie in CE.
(iv) In Appendix B, we also consider the trivial bundle

E+ ≡ A(Λ)×Hs+1(T Λ), (2.2)

which clearly lies inCE. E+ has a natural almost complex structureJ+ defined fiberwise
by the almost complex structure on the tangent space toΛ:

J+(J )u ≡ Ju.

With respect to the complex structureJ , TΛ splits intoTΛ = T 1,0Λ ⊕ T 0,1Λ, with
T 1,0Λ ≡ Ker(J − i), T 0,1Λ ≡ Ker(J + i). E+ therefore splits into subbundles

E+ = E+1,0 ⊕ E−1,0
,

whose fibers aboveJ ∈ A(Λ) are

E+1,0

J ≡ Ker(J +
J − i) = Hs+1(Ker(J − i)),

E+0,1

J ≡ Ker(J +
J + i) = Hs+1(Ker(J + i)).

3. Weighted vector bundles and half-weighted super vector bundles

A weighted Hilbert spaceis a pair(H,Q) with H in CH andQ ∈ Ell +
ord>0(M,E).
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3.1. Bundles of elliptic operators

Let E be a vector bundle inCE over a manifoldX with Emodeled on a separable Hilbert
spaceH . Forx ∈ X, let CL(Ex) be the set of operatorsAx acting densely on the fiberEx
abovex such that for any local trivializationφ : E|Ux → Ux × H nearx, the operator
φ"A(x) ≡ φ(x)Axφ(x)

−1 lies in CL(M,E). Hereφ(x) : Ex → H is the isomorphism
induced by the trivialization. Similarly, let Ell(Ex) be the set of operatorsAx acting densely
onTxX such that for any local trivializationφ : E|Ux → Ux ×H nearx, the operatorφ"A
lies in Ell(M,E). From this point on we will omit the subscriptx.

These definitions are independent of the choice of local chart. Indeed, since transi-
tion functions are given by operators in the groupCL∗(M,E) of invertible elements in
CL(M,E), the conditionφ"A ∈ CL(M,E) is independent of the choice ofφ. Since the
principal symbol is multiplicative and since ellipticity is characterized by invertibility of
the principal symbol, the conditionφ"A(x) ∈ Ell(M,E) is also independent of the choice
of φ. Notice that the order ofφ"A is independent of the choice of local chart, so we can
speak of the order ofA. This gives rise to bundlesCL(E ) and Ell(E ) with fiber at givenx
by CL(Ex) and Ell(Ex), respectively. In particular, a section of the second bundle is a family
of elliptic operators parameterized by the base.

3.2. Weighted bundles

A local sectionQ of Ell(E ), with Emodeled on someHs(M,E), is positive self-adjoint
if for all x in the support ofQ, and in any local chart(U, φ) aroundx, the operatorφ"Q(x)
lies in Ell+(M,E). A weighted bundleis a pair(E,Q) with E in CE andQ a section of
positive self-adjoint operators of constant order in Ell(E ). A weighted manifold(X,Q) is
a manifold inCX such that(TX,Q) is a weighted vector bundle. The operatorφ"Q is by
definition aweighton the model spaceH of X.

If E has no Hermitian structure, we can relax our definition of weight to be thoseQwhich
are locally elliptic of constant order with the Agmon–Nirenberg condition (i.e. with leading
symbol having all eigenvalues lying outside some common fixed angle at the origin). In this
generality, the choice of a weightQ replaces the structure groupGL(H) = GL(Hs(M,E))

of E by the subgroupCL∗
0(M,E) = CL∗(M,E)∩GL(H). (This is not a classical reduction

of structure group, sinceCL∗
0(M,E) is not a Lie subgroup ofGL(H) in the standard topolo-

gies.) Putting a Hermitian structure onE is equivalent to a true reduction ofCL∗
0(M,E) to

CL∗
0(M,E) ∩ U(H).

Examples. We return to examples (i)–(iv).
(i) When E is a rankn bundle, we can view it as before as a bundle of sections over

a manifold reduced to a point. ThenGL(H) = CL∗
0(M,E) = CL∗(M,E) = GL(n,C),

so a choice of weight is irrelevant. However,CL∗(M,E) ∩ U(H) = U(n), so the “true
reduction” amounts to a choice of Hermitian metric.

(ii) For the current groupsHs(M,G), letQ0 ≡ $⊕1Lie(G) be the Laplace–Beltrami oper-
ator onM with values in the Lie algebra Lie(G) of the groupG, for$ the Laplace–Beltrami
operator acting on complex valued functions onM. For γ ∈ Hs(M,G), settingQ(γ ) ≡
L−1
γ Q0Lγ , whereLγ is left multiplication byγ , yields a weighted manifold(Hs(M,G),Q).
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(iii) and (iv) We consider the bundlesE± defined above. ForJ ∈ A(Λ), let αJ :
Hs+1(T Λ) → Hs(T 1

1Λ) be the operator defined by the Lie derivative ofJ

αJ u = d

dt
(f ∗
u,tJ ), (3.1)

wherefu,t is the flow of the vector fieldu. αJ is a first-order elliptic operator with range
TJA

s(Λ) = {H ∈ Hs(T 1
1Λ), HJ + JH = 0} [20]. Its adjointα∗

J is defined with respect to
the Hermitian products:

〈u, v〉+
J ≡

∫
Λ

dµJ (x)〈u, v〉gJ , (3.2a)

〈H,K〉−
J ≡

∫
Λ

dµJ (x)〈H,K〉gJ . (3.2b)

HeregJ is the unique metric of constant curvature−1 among the conformal class of metrics
for whichJ is orthogonal[20], and dµJ is the associated volume form. Note that〈H,K〉 =
tr(HK∗), whereK∗ is the Hermitian adjoint of the matrix representing the(1,1) tensorK
with respect togJ . Sinceα∗

J αJ andαJα∗
J are elliptic, the families

Q+ ≡ {Q+
J ≡ α∗

J αJ , J ∈ A(Λ)}, Q− ≡ {Q−
J ≡ αJα

∗
J , J ∈ A(Λ)},

yield weighted bundles(E+,Q+) and (E−,Q−), respectively. Thus we get a weighted
super vector bundle

E = E+ ⊕ E−, Q ≡ Q+ ⊕Q−. (3.3)

3.3. Half-weighted super vector bundles

For a super vector bundleE in CE with fibers modeled on someHs +
(E+)⊕Hs −

(E−),
s± > (dimM)/2, via local charts we can write a local sectionL of Ell(E ) in matrix form

L =
[
L++ L+−
L−+ L−−

]
.

Provided the transition maps are even, it makes sense to consider the class of odd operators,
i.e. those which locally have only off-diagonal terms. We define ahalf-weighted superbundle
to be a pair(E, L), whereE is a superbundle inCE with even transition maps andL is a
section of odd self-adjoint operators in Ell(E ) of non-zero order.

To a half-weighted superbundle(E, L), we can associate a weighted superbundle(E,Q ≡
L2). SinceL is odd, we can write

L ≡
[

0 L− ≡ (L+)∗

L+ 0

]
,

so the weightQ can be written as

Q = Q+ ⊕Q− ≡ L−L+ ⊕ L+L− = (L+)∗L+ ⊕ (L−)∗L−.
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Examples.(
E ≡ E+ ⊕ E−, L ≡

{[
0 α∗

J

αJ 0

]
, J ∈ A(Λ)

})
,

with E± as in(2.1) and (2.2), andαJ as in(3.1), is a half-weighted super vector bundle.
If αJ stabilizes the fiberE1,0

J for eachJ ∈ A(Λ), we can build a complex half-weighted

bundle(E1,0, L1,0 ≡ {L1,0
J , J ∈ A(Λ)}), whereL1,0

J = αJ |E1,0
J

.

As shown inLemma 7, L1,0
J is a Cauchy–Riemann operator, the historically first case of

examples provided by spinor bundles on even dimensional manifolds[4,18]. Letπ : Z → B

be a smooth fibration of even dimensional spin manifolds{Mb, b ∈ B}, and letE → B

be an infinite dimensional super vector bundle with fiberHs(Mb,Eb) for a smooth family
{Eb, b ∈ B} of Clifford bundles onMb. The Dirac operatorsDb = D+

b ⊕ D−
b act on

Hs(Mb,Eb) as elliptic operators. For

Lb ≡
[

0 D−
b = (D+∗

b )

D+
b 0

]
, (3.4)

(E, L) is a half-weighted superbundle.

3.4. From group actions to half-weighted superbundles

Half-weighted superbundles also arise from group actions. LetG andP be two infinite
dimensional Hilbert manifolds modeled, respectively, onHs +

(M,E+) andHs −
(M,E−),

whereE = E+ ⊕ E− is a superbundle overM, such that

(a) G has a smooth group multiplication on the right:Rγ0 : G→ G, γ �→ γ γ0 for γ0 ∈ G.
(b) G acts onP on the right byΘ : G× P→ P, (γ, p) → p · γ , inducing a smooth map

θp : G→ P, γ → p · γ for p ∈ P.
(c) The differentialαp ≡ dθp : TeG→ Tp(P) is elliptic, with order independent ofp.

Let E+ ≡ B × Lie(G), whereB is a submanifold ofP, Lie(G) = TeG, andE− = TP|B .
Then(

E = E+ ⊕ E−, L =
{
Lb ≡

[
0 α∗

b

αb 0

]
, b ∈ B

})

is a half-weighted superbundle.

Example. In Example (iii) of Section 1.1above, letG ≡ Diff s+1
0 (Λ) be the group of

isotopies (i.e. diffeomorphisms homotopic to the identity) ofΛ of Sobolev classHs+1. Al-
thoughG is not a Lie group, it is a Hilbert manifold modeled onHs+1(T Λ) with a smooth
multiplication on the right.G acts onAs(Λ) (which we recall is modeled onHs(T 1

1 ) by
pullback, and this action satisfies (a) and (b) above (see[20]). Sinceαj in (3.1) is elliptic,
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the family

L ≡
{[

0 α∗
J

αJ 0

]
, J ∈ A

}
yields a half-weighted structure on the bundleE in (3.3).

4. From a half-weighted super vector bundle to the determinant bundle

Let (E, L) be a half-weighted super vector bundle over a manifoldB, which as above
determines the weighted superbundle(E,Q) with Q = L2. From(E, L), we construct the
determinant bundleDet(E, L) = Det(E ), following [4,5,18].

As before, setE = E+ ⊕ E−, whereE± has fibers modeled onHs±(M,E±), and write
a sectionL of Ell(E ) consisting of odd, self-adjoint operators in the form[

0 L− = (L+)∗

L+ 0

]
.

Letm be the order ofLb, b ∈ B, and sets+ = s− +m. This yields a family of Fredholm op-
eratorsL+

b : Hs +
(M,E+) → Hs −

(M,E−). As Quillen shows, there is a line bundle, the
determinant bundle Det(E )overB, with fiber Det(E )b � (Λtop KerL+

b )
∗⊕Λtop CokerL+

b ,
whereΛtop denotes the top exterior power. Det(E ) has a canonical section DetL+(b) given
by α(b)(e1 ∧ · · · ∧ en)∗ ⊗ (f1 ∧ · · · ∧ fm), where{ei}, respectively{fj }, are orthonormal
bases of the eigenvalues ofL−

b L
+
b , respectivelyL+

b L
−
b , lying below somea ∈ R not in the

spectrum of either operator, andα(b) is the determinant of the matrix ofL+
b with respect

to the bases{ei}, {fj }; equivalently,L+
b e1 ∧ · · · ∧ L+

b en = α(b)f1 ∧ · · · ∧ fn. Note that
DetL+ is zero iffL+

b is non-invertible.

4.1. A family of connections on the determinant bundle

Fix ε > 0. At any pointb ∈ B, whereLb is injective, theε-cutoff determinant of the
self-adjoint elliptic operatorQ+

b = L−
b L

+
b is defined by

detεQ
+
b ≡ exp

[
−
∫ ∞

ε

1

t
tr(e−tQ+

b )dt

]
.

For non-invertibleL+
b , we subtract off the dimension of the zero eigenspace before taking

the trace in the integral. The cutoff determinants yield a one-parameter family of Quillen
metrics{‖ · ‖Q,ε, ε > 0} on Det(E ) defined by

‖DetL+
b ‖2

Q,ε ≡
{

detεQ
+
b , L+

b invertible;
detεQ

+
(b,>a) · detQ+

(b,<a), L+
b non-invertible.

HereQ+
(b,>a) is the restriction ofQ+

b to the eigenspaces abovea, with determinant computed

as forQ+
b , andQ+

(b,<a) is the restriction ofQ+
b to the finite dimensional eigenspaces below
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a, with the determinant computed as usual. Since our formulas involve regularization only
on the eigenspaces above a fixed, locally defineda, for notational simplicity we will assume
from now on thatL±

b is invertible. In general, our formulas can be modified via the cutoff
operatorQ+

(b,>a).

Given a connection∇E onE, as in[4] we can define a one-parameter family{∇Det(E ),ε, ε >

0} of connections on Det(E ) compatible with the metrics{‖ · ‖Q,ε, ε > 0} by

(DetL+
b )

−1∇Det(E ),ε DetL+
b

≡ tr((L+
b )

−1∇Hom(E )L+
b e−εQ+

b )

= 1
2(dlog detεQ

+
b + str((Lb)

−1∇Hom(E )Lb e−εQb)). (4.1)

Here∇Hom(E ) denotes the connection on Hom(E+, E−) induced by∇E, and str denotes
the supertrace, defined by

str(A) = str

[
A+ X

Y A−

]
≡ tr(A+)− tr(A−). (4.2)

This definition is motivated by the corresponding formula for the natural connection(6.3)
on the determinant line bundle for a finite rank superbundle.

4.2. Renormalized limits

Following [5, Chapter 9], from the family of connections{∇Det(E ),ε, ε > 0}, we build
a renormalized connection by taking a renormalized limit asε → 0. More precisely, for
(m, n) ∈ (N \ {0})× N, α ∈ R, letFm,n,α be the set of functionsf : R + \ {0} → C such
that there existaj , bj , cj ∈ C with

f (ε) ∼
∞∑
j=0

aj ε
λj +

∞∑
j=0,λj∈Z

bj ε
λj logε +

∞∑
j=0

cj ε
j ,

asε → 0, whereλj ≡ (j−α−n)/m. In other words, forJ ∈ N andKJ ≡ [α]+mJ+n ∈ N,
we have

f (ε) =
KJ∑
j=0

aj ε
λj +

KJ∑
j=0,λj∈Z

bj ε
λj logε +

J∑
j=0

cj ε
j + o(εJ )

(cf. (5.3)). If α ∈ Z, there is a redundancy since constant terms can arise in the first and
last sum. We call such a functionrenormalizable, and forf ∈ Fm ≡ ∪n∈N,α∈RFm,n,α, we
defineµ-renormalized limitof f at zero by

Limµ
ε→0f (ε) = aα+n + c0 − µbα+n, (4.3)

where we setaα+n = 0 andbα+n = 0 if α+n /∈ N. Thus Limµε→0f (ε) is the constant term
in f ’s asymptotic expansion minusµ times the coefficient of logε ([5] only considers the
caseµ = γ , the Euler constant). If there is no logarithmic divergence, then Lim≡ Limµ ≡
Limµ

ε→0 is independent ofµ.
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4.3. A renormalized connection on the determinant bundle

As in [4,5], we set

(DetL+
b )

−1∇Det,µ DetL+
b

≡ Limµ
ε→0 tr((L+

b )
−1(∇Hom(E )L+

b )e
−εL−

b L
+
b )

= 1
2(dlog detµQ

+
b + Limµ

ε→0 str((Lb)
−1(∇Hom(E )Lb)e

−εQb)),

where

detµQ
+
b ≡ exp

(
−Limµ

ε→0

∫ ∞

ε

1

t
tr(e−tQ+

b )dt

)
.

The renormalized connection∇Det(E ),µ = ∇Det,µ is compatible with the renormalized
Quillen metric given by

‖DetL+
b ‖Q,µ ≡

√
detµQ

+
b .

The curvature of∇Det,µ is denoted byΩDet,µ.

5. First Chern forms on weighted vector bundles

The first Chern form on a finite rank Hermitian bundle with connection is the trace of
the curvature. In infinite rank, one cannot expect curvature to be trace-class in general, so
we need to regularize (or renormalize) the trace. We will use extra data of the weights of
Section 3to define weighted traces in two steps: (i) defining a one-parameter family of
weighted traces; (ii) taking a renormalized limit.

Let (E,Q) be a weighted vector bundle inCH with fibers modeled onHs(M,E), and
letA be a section ofCL(E ).Q is positive elliptic with strictly positive order, so forε > 0,
e−εQ is infinitely smoothing when seen in a local chart. ThusAe−εQ is trace-class when
considered in a local chart as a trace-class operator acting onL2(M,E). We remark that
a trace-class operator for theL2 inner product〈·, ·〉 can be considered equally well as a
trace-class operator with respect to theHs scalar product

〈σ, ρ〉s ≡ 〈(Q+ 1)s/ord(Q)σ, (Q+ 1)s/ord(Q)ρ〉.

5.1. A family of weighted pseudo-traces

We define a one-parameter family ofQ-pseudo-tracesof A by

trQε (A) ≡ tr(Ae−εQ), (5.1)

for ε > 0. Again this definition should be understood in a local chart, but it is independent
of the choice of chart, since for an invertible operatorC, we have tr(CAC−1 e−εCQC−1

) =
tr(CAe−εQC−1) = tr(Ae−εQ). We emphasize that pseudo-traces are not traces in the usual
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sense. First, trQε [A1, A2] �= 0 in general. Moreover, unlike the finite dimensional case, if
{Qt, t ∈ R}, is a one-parameter family of weights and{At, t ∈ R} is a one-parameter
family of PDOs, then for fixedε > 0

d

dt

∣∣∣∣
t=0

trQtε (At ) �= trQ0
ε (Ȧ)− ε trQ0

ε (A0Q̇),

whereṪ ≡ (d/dt)|t=0Tt , as one would expect from a formal differentiation of(5.1), since
in general neitheṙQ norA0 commutes withQ0. If eitherQ̇ orA0 commutes withQ0, this
equation holds by[9, Section 1.9]. These obstructions can be analyzed more carefully using
the renormalized pseudo-traces in the next paragraph (see[6,16]).

By (5.1), the one-parameter family of connections on the determinant bundle given by
(4.1) is

(Det+L )
−1∇DetE,ε DetL+ = trQ

+
ε ((L+)−1∇Hom(E )L+)

= 1
2(dlog detεQ

+ + strQε (L
−1∇Hom(E )L)). (5.2)

As beforeQ± ≡ L∓L± andQ ≡ Q+ ⊕Q−.

5.2. Renormalized pseudo-traces

From the classical theory of heat expansions[9,11], [14, (3.18)], for a positive elliptic
operatorQ of positive integer order and a PDOA acting on sections of a vector bundle
over a closed manifoldM, the mapε → tr(Ae−εQ) lies in the classFq of Section 4, where
q = ord(Q). More precisely, there existN = N(dimM) ∈ N+, a = a(ord(A)) ∈ R and
αj (Q,A), βj (Q,A), γj (Q,A) ∈ C such that

tr(Ae−εQ) ∼
∞∑
j=0

αj (Q,A)ε
(j−a−N)/q

+
∞∑

j=0,((j−a−N)/q)∈Z

βj (Q,A)ε
(j−a−N)/q logε +

∞∑
j=0

γj (Q,A)ε
j

(5.3)

asε → 0. As before, constant terms can arise as bothγ0 andαa+N if ord(A) ∈ Z. We define
theQ-renormalized traceof A as theµ-renormalized limit of the mapε �→ tr(Ae−εQ), as
in (4.3)

trQ,µ(A) ≡ Limµ
ε→0 trQε (Q) = αa+N(Q,A)+ γ0(Q,A)− µ · βa+N(Q,A). (5.4)

If we setµ = 0, respectivelyµ = γ , the Euler constant, we get a heat kernel renormalized
trace, respectively, a zeta function renormalized trace, and these two are related via a Mellin
transform. In the following, we will usually consider the caseµ = 0, and write trQ for trQ,0.
The results can easily be extended to the general case of trQ,µ.
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5.3. Renormalized supertraces

(5.4)extends toQ-renormalized supertraces in the obvious way forQ = Q+ ⊕Q−:

strQ,µ(A) = trQ
+,µ(A+)− trQ

−,µ(A−),

for A as in (4.2) with A± PDOs. Renormalized pseudo-traces/supertraces appear in the
geometry of determinant bundles[4], where the connection on the determinant bundle can
be written as

(DetL+
b )

−1∇Det,µ DetL+
b ≡ trQ

+,µ((L+
b )

−1∇Hom(E )L+
b )

= 1
2(dlog detµQ

+ + strQ,µ((Lb)
−1∇Hom(E )Lb)). (5.5)

They also have been used (i) to define minimality of infinite dimensional submanifolds of
manifolds of connections and metrics[2,15] and (ii) in relation to determinants of elliptic
operators[12], for a special class of operators on which they are actually traces.

These renormalized traces are related to Wodzicki residues, as we briefly recall; see
[12,13,16] for more details. Let(E,Q) in CH be a weighted vector bundle with fibers
modeled onHs(M,E), and letA be a section ofCL(E ). SinceQ is positive elliptic with
strictly positive order for anyz ∈ C with Re(z) > dimM/ord(Q), the operator(Q+PQ)−z
is trace-class onL2(M,E) in any local chart. HerePQ is the orthogonal projection onto the
kernel ofQ. Similarly, for Re(z) > (dimM+ord(A))/ord(Q),A(Q+PQ)−z is trace-class.
For suchz, we may define

s̃trQz (A) ≡ str(A(Q+ PQ)
−z).

BecauseA±,Q±, PQ± are classical PDOs, it is standard thats̃trQz (A) has a meromorphic
continuation toC with at most simple poles. By the Mellin transform, we have

βa+n(Q,A) = resz=0(s̃trQz (A))

in the notation of(5.3); in particular,βa+n(A) = βa+n(Q,A) is independent ofQ. It follows
via a Mellin transform that

strQ,µ(A) = lim
z→0

(s̃trQz (A)− z−1 resz=0(s̃trQz (A))+ (γ − µ) resz=0(s̃trQz (A)).

Renormalized pseudo-traces thus arise as the finite part of a divergent expression. The
infinite part is built from the Wodzicki residue[21] res(A):

res(A) ≡ (ord(Q)) resz=0(s̃trQz (A)), (5.6)

which defines a trace on the algebra of PDOs[11,21]. In summary

strQ,µ(A) = lim
z→0

(
s̃trQz (A)−

1

z ord(Q)
res(A)

)
+ γ − µ

ord(Q)
res(A).

We can now defineQ-weighted first Chern forms on a weighted vector bundle.
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Definition. Let (E,Q) be a weighted Hermitian (super) vector bundle overB with connec-
tion ∇E and curvatureΩE. Assume that for anyX, Y ∈ Γ (TB), ΩE(X, Y ) ∈ Γ (CL(E )).
Define

(i) the one-parameter family ofQ-weighted first Chern forms by

r
Q,ε
1 (X, Y ) ≡ strQε (Ω

E(X, Y )), ε > 0, (5.7)

(ii) the one-parameter family ofQ-renormalized first Chern forms

R
Q,µ
1 (X, Y ) ≡ strQ,µ(ΩE(X, Y )), µ ∈ R. (5.8)

6. The curvature on the associated determinant bundle in finite dimensions

LetE be a finite dimensional bundle with connection∇E, and letα be a Hom(E, E)-valued
form. Writing ∇E = d + θ in a local trivialization, we have

d tr(α) = tr([d, α]) = tr([d, α])+ tr([θ, α]) = tr([∇E, α]), (6.1)

since the trace term tr([θ, α]) vanishes. The final expression is of course independent of
the choice of local trivialization. Thus the trace of a covariantly constant form is closed. In
particular, since the curvatureΩE is covariantly constant by the Bianchi identity, the first
Chern formrE1 ≡ tr(ΩE) is also closed. This form is a representative of the first Chern class
in de Rham cohomology.

This generalizes to supertraces on superbundles

d str(α) = str([∇E, α]), (6.2)

where [·, ·] is now a supercommutator and∇E a superconnection on the superbundleE. The
first Chern formrE1 ≡ str(ΩE) is therefore also closed.

We recall the relation between the first Chern form of a superbundle and the curvature of
the associated determinant bundle. LetE± be Hermitian vector bundles with connections
∇E± over a manifoldB. ∇E± induce a connection∇E on E = E+ ⊕ E−. The bundle
Hom(E+, E−) � (E+)∗ ⊗ E− has the natural connection∇Hom(E ) ≡ (∇E+

)∗ ⊗ 1 + 1 ⊗
∇E−

, given by∇Hom(E )L+ = [∇E, L+] for L+ ∈ Γ (Hom(E+, E−)) (cf. Appendix A).
Assuming for convenience thatE± have the same rank, the determinant bundle Det(E ) ≡
(ΛtopE+)∗ ⊗ΛtopE− has the Hermitian metric

‖DetL+‖ ≡
√

det((L+)∗L+)

for L+ ∈ Γ (Hom(E+, E−)) and DetL+ the corresponding section of Det(E+, E−). ∇E
induces a connection∇DetE on Det(E ) compatible with this metric, defined at points where
L+ is injective by

(DetL+)−1∇DetEDetL+ ≡ tr((L+)−1[∇E, L+])

= 1
2(dlog detQ+ + str(L−1[∇E, L])), (6.3)

whereL = L+ ⊕ (L+)∗,Q+ = (L+)∗L+ (cf. (5.3) and (5.5)). The following lemma is
well known.
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Lemma 1. The curvatureΩDetE of the connection∇DetE on the determinant bundleDet(E )
associated to the connection∇E on the superbundleE = E+ ⊕ E− satisfies

ΩDetE = −str(ΩE) = ch(∇E)[2], (6.4)

whereΩE is the curvature of∇E, andch(∇E)[2] is the degree two component of the Chern
characterstr(exp[−ΩE]) of the connection, i.e. the curvature of the determinant line bundle
is minus the first Chern form of the superbundle.

Proof. For later purposes, we give a basis free proof. PickM,N,∈ TbB, whereL+ is
injective atb. ExtendL+ nearb so that [∇E, L+]b = 0. By (6.3), we have

ΩDetE(M,N) = 1
2 d(str(L−1[∇E, L]))(M,N) = 1

2 str([∇E, L−1[∇E, L]])(M,N).

Using the Cartan formula dα(M,N) = M(α(N))−N(α(M))− α([M,N ]), we get

ΩDetE(M,N) = 1
2str([L−1[∇EM,L], L−1[∇EN,L]])+ str(L−1[ΩE, L])(M,N))

= 1
2 str(L−1[ΩE, L])(M,N) = −str(ΩE)(M,N), (6.5)

where we have used str(A−1[B,A]) = −2str(B) for A odd,B even. The second equality
in (6.4) is standard. �

7. The curvature on the determinant bundle in infinite dimensions

The main goal of this paper is to see how(6.4) extends to the infinite dimensional set-
ting. More precisely, the Quillen–Bismut–Freed theory of determinant bundles constructs
a determinant bundle with connections(5.2) and (5.5), for certain half-weighted superbun-
dles, with the curvature of(5.5)computed in[4]. Via weighted traces, we have constructed
weighted and renormalized first Chern forms of such superbundles, and it is natural to ask
if (6.4)continues to hold.

The proof of(6.4) uses the facts tr([A,B]) = 0 and d str= str([∇E, ·]), both of which
fail for weighted traces. Thus we cannot expect(6.4) to hold in infinite dimensions. In-
deed we will show by two methods that(6.4) holds up to an obstruction. The two meth-
ods lead to different expressions for these obstructions which seem difficult to identify
directly.

The first zeta function regularization approach uses weighted traces to express the su-
pertrace of a commutator and the obstruction to d str= str([∇, ·]) in terms of Wodz-
icki residues. The appearance of Wodzicki residues is natural, since they are defined
via zeta function regularization. The second heat kernel regularization approach uses a
one-parameter family of superconnections introduced by Bismut[3] to avoid weighted
traces, and closely follows the methods used in[4,5] to compute the curvature on the de-
terminant bundle for families of Dirac operators.
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7.1. First approach using weighted traces

Let E = E+ ⊕ E− in CE be a superbundle with connection∇E with even transition maps
acting on a model spaceHs(M,E), s > (dimM)/2. LetQ be a weight onE. The following
lemma expresses the obstruction to d str= str([∇, ·]) as a Wodzicki residue.

Lemma 2 ([6]). Let(E,Q) be a weighted vector bundle with connection∇ over a manifold
B, and letα, β, be sections of the bundle CL(E) based on B. Forµ ∈ R,

(1)

strQ,µ[α, β] = − 1

ord(Q)
res([logQ,α]β). (7.1)

(2) If [∇, logQ] and[∇, α] are CL(E)-valued one-forms, then

d(strQ,µ(α)) = strQ,µ([∇, α])− 1

ord(Q)
res(α · [∇, logQ]). (7.2)

For completeness, we outline the proof of(7.2)for traces, which easily extends to super-
traces, and refer the reader to[6] for (7.1). As before, trQ denotes the renormalized trace
trQ,µ atµ = 0; the results extend toµ �= 0.

One first shows that for one-parameter families of operatorsAt ∈ CL(M,E),Qt ∈
Ell +

ord>0(M,E) of constant order, we have

d

dt

∣∣∣∣
t=0

(trQt(At )) = trQ0

(
d

dt

∣∣∣∣
t=0

At

)
− 1

ord(Q)0
res

(
A0

d

dt

∣∣∣∣
t=0

logQt

)
.

This uses the fundamental property of the canonical trace of Kontsevich–Vishik[13]. Sim-
ilarly, in a fixed local trivialization ofE, we have

d trQ(α) = trQ(dα)− 1

ord(Q)
res(α dlogQ). (7.3)

Let∇ = d+θ in the local trivialization. Since [∇, α] = dα+[θ, α] ∈ Γ (CL(E )), and since
dα, the differential of a PDO, also lies inΓ (CL(E )), it follows that [θ, α] lies in CL(M,E)
pointwise. Using again the fundamental property of the canonical trace, one shows

trQ[θ, α] = − 1

ord(Q)
res([logQ, θ ]α). (7.4)

Combining(7.3) and (7.4)gives

d trQ(α) = trQ(dα)− 1

ord(Q)
res(α dlogQ)

= trQ([∇, α])− trQ([θ, α])− 1

ord(Q)
res(α dlogQ)

= trQ([∇, α])+ 1

ord(Q)
res([logQ, θ ]α)− 1

ord(Q)
res(α dlogQ)

= trQ([∇, α])− 1

ord(Q)
res(α[∇, logQ]). �
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The residue term in(7.2) is the source of the infinite dimensional obstruction to identi-
fying the first Chern form of a superbundle with (minus) the curvature of the determinant
bundle.

Theorem 3. Let (E = E+ ⊕ E−, L = L+ ⊕ L−) be a half-weighted super vector bundle
with connection∇E over a manifold B. The curvatureΩDet,µ of the associated determi-
nant bundle differs from the Q-weighted first Chern formRQ,µ1 of (5.8) on the weighted
superbundle(E,Q = L2) by a Wodzicki residue. More precisely, forM,N ∈ TbB we have

ΩDet,µ(M,N) = −RQ,µ1 (M,N)+RQ,∇E(M,N),
with

2RQ,∇
E
(M,N) = 1

ord(Q)
res([logQ,L−1[∇EM,L]]L−1[∇EN,L] − L−1[∇EN,L]

·[∇EM, logQ] + L−1[∇EM,L] · [∇EN, logQ]).

Proof. We follow the proof ofLemma 1, replacing traces by renormalized supertraces and
keeping track of obstructions due to(7.1) and (7.2)via Wodzicki residues. Droppingµ, we
obtain

2ΩDet(M,N) = d(strQ(L−1[∇E, L]))(M,N)

= −strQ([L−1[∇EM,L], L−1[∇EN,L]])+ strQ(L−1[ΩE(M,N), L])

− 1

ord(Q)
res(L−1[∇EN,L] · [∇EM, logQ])

+ 1

ord(Q)
res(L−1[∇EM,L] · [∇EN, logQ]),

using(7.2)and calculating as in(6.5). Thus

2ΩDet(M,N) = −2strQ(ΩE(M,N))

+ 1

ord(Q)
res([logQ,L−1[∇EM,L]]L−1[∇EN,L])

− 1

ord(Q)
res(L−1[∇EN,L] · [∇EM, logQ])

+ 1

ord(Q)
res(L−1[∇EM,L] · [∇EN, logQ]),

using(7.1). �

7.2. The heat kernel approach

Here we deform the weightQ = Q0 ≡ L2 to a one-parameter familyQ0 +Q1,ε, ε > 0
via a deformation of the superconnection∇E into a family∇Lε of Bismut superconnections.
We need a preliminary formula.
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7.3. Volterra series

LetQ = Q0 +Q1, whereQ0 is a positive elliptic operator of strictly positive order, and
Q1 is a PDO of order strictly less than that ofQ0. We have

e−ε(Q0+Q1)

=
∞∑
k=0

(−ε)k
∫
∆k

e−σ0εQ0Q1 e−σ1εQ0Q1, . . . ,Q1 e−σkεQ0 dσ0 dσ1, . . . ,dσk,

where∆k = {σ0, . . . , σk > 0 :
∑k
i=0 σi = 1} [5, (2.5)]. We can avoid convergence issues,

since we will only be using a finite number of terms. In analogy with the notation in[10],
we set

〈A0, A1, . . . , Ak〉ε,k,Q0

≡
∫
∆k

str(A0 e−σ0εQ0A1 e−σ1εQ0A2 · · ·Ak e−σkεQ0)dσ0 dσ1 · · · dσk,

for PDOsA0, . . . , Ak acting on sections of the model bundleE of E. The supertrace is
clearly finite forε > 0. The Volterra formula implies

str(Ae−ε(Q0+Q1)) =
∞∑
k=0

(−ε)k〈A,Q1, . . . ,Q1〉ε,k,Q0,

for any PDO A.

7.4. Bismut superconnections

Starting from a half-weighted superbundle(E = E+ ⊕ E−, L) with a metric supercon-
nection∇E = ∇ + ⊕ ∇ −, we form the one-parameter family of superconnections

∇Lε ≡ ∇E + √
εL,

for ε > 0 [3]. For any one-parameter family of superconnectionsAt , we have the important
transgression formula: for an analytic functionf ,

d

dt
str(f (A2

t )) = d

(
str

(
d

dt
Atf

′(A2
t )

))
. (7.5)

The derivation of this formula in[5, Proposition 1.41]essentially relies on the fact that
d(str(α)) = str[A, α] for Hom(E, E)-valued one-formsα. Thus in the proof below, we
avoid the obstructions to(6.1) and (6.2), for the weighted supertraces strQ.

Proposition 4. Let(E, L) be a half-weighted superbundle with connection∇E over a man-
ifold B. For ε > 0 we have

ΩDetE,ε = ch(∇Lε )[2] = −rQ,ε1 + ε〈I, [∇E, L], [∇E, L]ε,2,Q0,

whereQ0 = L2, r
Q,ε
1 ≡ strQ0

ε (Ω
E) is the weighted first Chern form of∇E as in (5.7)

ΩDetE,ε is the curvature of∇DetE,ε as in (4.1), and ch(∇Lε )[2] ≡ str(exp(−(∇Lε )2))[2] is
the degree two component of the Chern character of∇Lε .



412 S. Paycha, S. Rosenberg / Journal of Geometry and Physics 45 (2003) 394–430

Proof. We first compute the degreek piece of the Chern character of∇Lε in two ways. On
the one hand, since

(∇Lε )2 = εQ0 + √
ε[∇E, L] + (∇E)2 = ε(Q0 +Q1,ε),

withQ0 ≡ L2,Q1,ε ≡ (1/
√
ε)[∇E, L] + (1/ε)(∇E)2, by the Volterra formula we have

ch(∇Lε )[k] =
∞∑
j=0

(−ε)j [〈I,Q1,ε, . . . ,Q1,ε〉ε,j,Q0]−k. (7.6)

As promised, we need only consider a finite number of terms in this sum.
On the other hand, we have

ch(∇Lε )[k] = str[exp[−(∇Lε )2]] [k] = str
∫ ∞

ε

[
d

dt
(exp[−(∇Lt )2)

]
[k]

dt

= −
∫ ∞

ε

d

dt
[str(exp[−(∇Lt )2])][k] dt.

Applying the transgression formula(7.5) to f (x) = e−x , we get

ch(∇Lε )[k] =
∫ ∞

ε

d

[
str

((
d

dt
∇Lt

)
exp[−(∇Lt )2]

)]
[k−1]

dt

= 1

2

(
d

[∫ ∞

ε

str

(
L√
t

exp[−(∇Lt )2]

)
dt

]
[k−1]

)

= 1

2
d
∫ ∞

ε

∞∑
j=0

(−t)j√
t

[〈L,Q1,t , . . . ,Q1,t 〉t,j,Q0][k−1]. (7.7)

Combining(7.6) and (7.7)yields

∞∑
j=0

(−ε)j [〈I,Q1,ε, . . . ,Q1,ε〉ε,j,Q0][k]

= 1

2
d
∫ ∞

ε

∞∑
j=0

(−t)j√
t

[〈L,Q1,t , . . . ,Q1,t 〉t,j,Q0][k−1]. (7.8)

SinceQ0 = L2, we have

ΩDetE,ε = 1

2
d(str(L−1[∇E, L] e−εQ0)) = −1

2
d
∫ ∞

ε

d

dt
str(L−1[∇E, L] e−tQ0)dt

= 1

2
d
∫ ∞

ε

str(L[∇E, L] e−tQ0)dt = 1

2
d
∫ ∞

ε

〈L, [∇E, L]〉t,1,Q0 dt

= 1

2
d

[∫ ∞

ε

√
t〈L,Q1,t 〉t,1,Q0 dt

]
[1]

= −1

2
d
∫ ∞

ε

 ∞∑
j=0

(−t)j√
t

〈L,Q1,t , . . . ,Q1,t 〉t,j,Q0


[1]

dt. (7.9)
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We used [L,Q0] = 0 in the second line, and the last equality follows since the only term
of degree one in the infinite sum is the integrand in the next to last integral. By(7.7) and
(7.9), we see thatΩDetE,ε = −ch(∇Lε )[2] .

Finally, by(7.8) and (7.9), we get

ΩDetE,ε = −〈I, (∇E)2〉ε,1,Q0 + ε〈I, [∇E, L], [∇E, L]〉ε,2,Q0

= −str(ΩE e−εQ0)+ ε〈I, [∇E, L], [∇E, L]〉ε,2,Q0,

which finishes the proof. �

Remark. In fact, (7.8)vanishes fork odd, since the integrand is the supertrace of an odd
operator, and hence vanishes.

By taking the renormalized limit inProposition 4, we obtain the following theorem.

Theorem 5. For anyµ ∈ R, the renormalized first Chern formRQ,µ1 defined in(5.8)and
the curvatureΩDet,µ of the determinant line bundle are related by

ΩDet,µ = Limµ
ε→0 ch(∇Lε )[2] = −RQ,µ1 + Limµ(ε〈I, [∇E, L], [∇E, L]〉ε,2,Q0).

Our approach differs somewhat from[4], as Bismut and Freed calculateΩDet,0 as
Lim0

ε→0 ch(∇̃Lε )[2] , where∇̃Lε = ∇E + ε1/2L + ε−1/2A2 is the Bismut superconnection
(for an explicit termA2 of degree two). The proof ofProposition 4applies to∇̃Lε ; starting
with (7.7), we have additional terms involvingA2, which do not contribute toΩDet,µ, the
k = 2 term in(7.7). Therefore, the degree-two pieces of the Chern characters of the super-
connections∇Lε , ∇̃Lε both compute the curvature of the determinant line bundle, although
the higher degree pieces differ. In the next paragraph, we will relate these expressions.

7.5. Bismut–Freed connections

For the connection on the infinite dimensional bundleE = E+⊕E− considered in[4], we
can say more about the renormalized first Chern form. As in(3.4), we consider a fibration
π : Z → B of manifolds, with fiber an even dimensional spin manifoldMb, b ∈ B, and
with finite rank Hermitian bundlesE± with unitary connections overZ. The Levi-Civita
connection∇LC for a given metric onZ and the associated orthogonal horizontal splitting
TxZ = TbMb ⊕ Hx , for x ∈ π −1(b), induces a connection∇F onF , the tangent bundle
along the fibers ofπ by

∇F = P TM∇LG, (7.10)

whereP TM is the orthogonal projection toF . We lift ∇F to a connection on the spinor
bundleS = S + ⊕S − associated toF . For an auxiliary bundle with connectionW onZ, we
setE = E+ ⊕ E−, a bundle overB with fiberHs(Mb, (S

± ⊗W)|Mb
) for E±. The induced

connection∇E onE = S ⊗W in turn induces a connectioñ∇ onE given by

(∇̃Y h)(b)(x) = (∇E
Ỹ
h)(x), (7.11)
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whereỸ is the horizontal lift ofY ∈ TB to Hx . This connection need not be unitary, but
it is shown in[4] that adding the divergence of the volume form atx in base directions
to the right-hand side of(7.11)produces a unitary superconnection∇̃u, the Bismut–Freed
connection onE.

We claim that the curvature formΩu for ∇̃u is an endomorphism in the fibers:

Ωu
b ∈ Λ2(Hom(S ⊗W |Mb

, S ⊗W |Mb
)).

First, the local nature of the Bismut–Freed connection show that ifψ ∈ Γ (E ) has support
in U × V , whereU is a open set inB andV is an open set containingx in π −1(U), then
∇̃uψ also has support inU ×V . This implies the same result forΩu(X, Y ), a combination
of first and second covariant derivatives of∇̃u. SinceΩu is tensorial, after multiplyingψ
by bump functions with decreasing support in base directions, we can shrinkU × V to the
point b. In other words,(Ωu(X, Y )ψ)(x) is determined byΩu(X, Y )x andψ(x) alone.
SinceΩu is linear, it must be an endomorphism in the fibers.

This allows us both to compute the renormalized first Chern formR
Q
1 = strQ(Ωu) and to

relate d(strQ(Ωu)) and strQ([∇̃u,Ωu]) = 0. HereQ = L2, withL a first-order differential
operator as in(3.3). SinceQ (which in[4] is the square of the Dirac operator in the fibers) is
a second-order differential operator, we have the asymptotic expansion for the heat kernel
eQ(ε, x, x):

eQ(ε, x, x) = 1

(4π)(dimM)/2

 J∑
j=−dimM

αj (x)ε
j/2 + O(ε(J+1)/2)

 .
αj (x) ∈ Hom(Ex,Ex) is locally computable from the metric onMb at x and the symbol
of Q at x. Ωu is an endomorphism andQ is a differential operator, so str(Ωu eεQ) has
an asymptotic expansion inε with no logarithmic terms, and strQ(Ωu) = strQ,µ(Ωu) is
consequently independent ofµ. In fact, by the standard “remarkable cancellations” of local
index theory, str(Ωu e−εQ) is O(1) asε → 0. Thus we can replace Limµε→0 in the definition

of the renormalized first Chern formRQ1 = R
Q,µ
1 by an ordinary limit:

R
Q
1 = strQ(Ωu) = lim

ε→0
str(Ωu e−εQ) = lim

ε→0

∫
M

str(Ωu
x eQ(ε, x, x))

= 1

(4π)(dimM)/2

∫
M

strµ(Ωu
x α0(x)), (7.12)

where we have used thatΩu is a homomorphism in the fibers. Also,

(4π)(dimM)/2 d strQ(Ωu)

= d
∫
M

str(Ωu
x α0(x)) =

∫
M

str([∇̃,Ωu
x α0(x)])

=
∫
M

str([∇̃,Ωu
x ])α0 +Ωu

x [∇̃x, α0(x)]) =
∫
M

str(Ωu
x [∇̃x, α0]).

Thus the obstruction toRQ1 = strQ(Ωu) being closed is given by the integral of
str(Ωu[∇̃x, a0]). The integrand is a local expression except in its dependence on∇̃x .
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Corollary 6. In the Bismut–Freed setting of a fibrationπ : Z → B as above, assume that
the metric onπ −1(b) is flat and the connection on E is flat in fiber directions inπ −1(b).
Then the Bismut–Freed curvature at b reduces to a Wodzicki residue; i.e. in the notation of
Theorem 3,

ΩDet,µ(M,N) = RQ,∇
ε

(M,N)

Proof. Sinceα0 ≡ 0 under the hypotheses, it follows from(7.12), that the termRQ,µ1 in
Theorem 3 vanishes and hence only the residue terms remain. �

The significance of the Corollary is that the curvature of the Bismut–Freed connection
on the determinant line bundle of a family of Dirac operators, given by

ΩDet,0 =
[∫
M

Â(ΩF ) ch(ΩW)

]
[2]
, (7.13)

does not have this vanishing property; hereΩF is the curvature of∇F . Thus Theorems 3 and
5 split the Bismut–Freed curvature into two terms. The first term−RQ,µ1 = −strQ(Ωu),
the analogue of the finite dimensional curvature, is localized on the fiber in the sense of
the Corollary. The second obstruction term is a Wodzicki residue, which by Wodzicki’s
work is locally computed from the symbol of the (non-local) PDOs in Theorem 3. Thus the
Bismut–Freed curvature breaks into two terms with locality properties in these technical
senses.

Remark.

(1) We can define a Chern character form as
∑
k strQ(Ωk)/k! for weighted bundles, and

hence Chern forms via Newton’s formulas. These forms will not be closed in general,
and their significance is unclear.

(2) Theorems 3 and 5compute the infinite dimensional obstruction to the finite dimensional
equality of the curvature on the determinant bundle with (minus) the first Chern form on
the original vector bundle. The different looking obstructions in these theorems are re-
lated by the fact that renormalized limits of expressions of the type〈A0A1, . . . , Ak〉k,ε,Q0

can be expressed in terms of Wodzicki residues. More precisely, in Appendix B we show
that the coefficients of divergent terms in the asymptotics of〈I, [∇E, L], [∇E, L]〉ε,2,Q0

asε → 0 are combinations of Wodzicki residues.
(3) In fact, Proposition 4is a more refined result thanTheorems 3 and 5. Indeed, zeta

function regularization at zero only detects logarithmic divergences, while heat kernel
regularization keeps track of all divergences inε in fractional powers ofε.

8. The Bismut–Freed connection and the curvature of the determinant bundle over
the manifold of almost complex structures

In this section, we apply the theory ofSection 7to study the Bismut–Freed connection
on the fibration associated to the string theory example of diffeomorphisms acting on the
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space of almost complex structuresA(Λ) on a surface. We show that this connection agrees
with a classical connection in Teichmüller theory, and we compute the renormalized first
Chern form for the infinite dimensional bundle.

LetΛ be a smooth closed Riemannian surface of genus greater than one, and fix a Sobolev
indexs > 1. As inSection 2, Example (iii), we set

E+ = A(Λ)×Hs+1(T Λ),

E− = TAs |A(Λ) =
⋃

J∈A(Λ)
{H ∈ Hs(T 1

1Λ), JH = −HJ}.

8.1. Almost complex structures on the bundlesE±

Each of the real bundlesE± overA(Λ) has an almost complex structure. OnE+, the
almost complex structure is defined on the fiber aboveJ ∈ A(Λ) by J itself:

J +
J (u) ≡ Ju, u ∈ Hs+1(T Λ).

Similarly, the action

J −
J (H) = H · J, H ∈ TJAs(Λ)

is an almost complex structure onE−.
LetMs

−1(Λ) be the space ofHs Riemmanian metrics onΛ with curvature−1, and set

Φ : As(Λ) →Ms
−1(Λ), Φ(J ) = gJ , (8.1)

wheregJ is the unique Riemannian metricgJ onΛwith curvature−1 in the conformal class
defined byJ .Φ is a diffeomorphism between the Hilbert manifoldsAs(Λ) andMs

−1(Λ),
and the derivative ofΦ at J in the directionN is given by(DJΦ(N))ab = (gJ )ac(NJ )

c
b

[20]. ForαJ as in(3.1), the operator

Pg = PgJ ≡ DJΦ ◦ αJ ◦DgJ Φ −1 (8.2)

plays a fundamental role in the Faddeev–Popov procedure for string theories (see[1]).

Lemma 7. The bundle mapα : E+ → E− defined in(3.1) is compatible with the almost
complex structuresJ ± in the sense that

αJ (Ker(J +
J − i)) = Ker(J −

J − i),

αJ (Ker(J −
J + i)) = Ker(J −

J + i) ∀J ∈ A(Λ).
Moreover, αJ is a first-order elliptic operator.

Proof. We first show thatαJ is first-order elliptic. In isothermal coordinates forg, the
complexified operatorPC

g is [1]

PC
g

(
uz̄
∂

∂z̄
+ uz

∂

∂z

)
= ∂zu

z̄ ∂

∂z̄
⊗ dz+ ∂z̄u

z ∂

∂z
⊗ dz̄, (8.3)
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soPC
g = ∂̄⊕∂ where∂̄ is the Cauchy–Riemann operator.PgJ is therefore first-order elliptic,

and hence so isαJ , since its principal symbol differs fromPgJ ’s by the isomorphisms in
(8.2).

It is easy to check that Ker(J +
J − i) = {uz∂/∂z} and Ker(J +

J + i) = {uz̄∂/∂z̄}, and that

Ker(J +
J − i) =

{
Hz
z̄

∂

∂z
dz̄

}
, Ker(J +

J + i) =
{
Hz̄
z

∂

∂z̄
dz

}
.

Indeed, sinceJ 1
1 = J 2

2 = 0 andJ 1
2 = −1 in isothermal coordinates, we have

(J −
J H)

z̄
z = (HJ)z̄z = 1

2((HJ)12 − i(HJ)11) = 1
2(H

1
1J

1
2 − iH 1

2J
2
1 ) = 1

2(−H 1
1 − iH 1

2 )

= −1
2 i(H 1

2 − iH 2
1 ) = −iHz̄

z .

Similarly, (J +
J H)

z̄
z = iHz̄

z . The lemma then follows from(8.3), since

u ∈ Ker(J +
J − i) ⇒ uz̄ = 0 ⇒ (PgJ (u))

z̄
z = 0 ⇒ PgJ (u) ∈ Ker(J −

J − i). �

8.2. Hermitian metrics onE±

E± have theL2 Riemannian metricsγ± given be(3.2a) and (3.2b), which are compatible
with the almost complex structuresJ±. Indeed, for tangent vector fieldsu, v onΛ, we have

〈J+u,J+v〉+
J = 〈Ju, Jv〉+

J = 〈u, v〉+
J ,

sincegJ is compatible withJ . Similarly, for (1,1) tensorsH,K onΛ, we have

〈J −H,J −K〉−
J = 〈HJ,KJ〉+

J =
∫
Λ

dµJ (x)tr(HJJ∗K∗) =
∫
Λ

dµJ (x)tr(HK∗),

sinceJ ∗ = −J andJ 2 = −1.
Using the family of elliptic operators{QJ ≡ Q+

J ⊕Q−
J ≡ α∗

J αJ ⊕ α∗
J αJ , J ∈ A(Λ)},

we haveHs metricsγ s,± defined on the fiberE±J aboveJ by

〈u, v〉s,±J ≡ 〈(Q±
J + 1)su, v〉±J = 〈(Q±

J + 1)s/2u, (Q±
J + 1)s/2v〉±J . (8.4)

8.3. Connections onE±

We now defineL2 andHs connections onE±. AsE+ is trivial, let∇ + ≡ d+ θ + where

θ +(N) ≡ 1
2NJ, (8.5a)

for N ∈ TJA(Λ), J ∈ A(Λ). HereNJ acts onu ∈ Hs+1(T Λ) by NJu(x) ≡ N(x) ·
J (x)(u(x)), with “·” denoting matrix multiplication. SinceN, J ∈ C∞(T 1

1Λ), multiplica-
tion byNJpreservesHs+1(T Λ), soθ + is a Hom(Hs+1(T Λ),Hs+1(T Λ))-valued one-form
onA.

The local charts on the manifoldsAs(Λ) andA(Λ), given pointwise by the matrix
exponential map as inSection 2, induce a local trivialization ofE− over the base space
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A(Λ)with fibersTJAs(Λ), J ∈ A(Λ). In a local chart atJ ∈ A(Λ), we set∇ − ≡ d+θ −,
with

θ −(N) ≡ −1
2J {N, ·} (8.5b)

for N ∈ TJA(Λ). Here{M,N} ≡ MN+ NM. θ − is a Hom(Hs(T 1
1Λ),H

s(T 1
1Λ))-valued

one-form onA(Λ), since we again matrix multiply elements inHs(T 1
1Λ) by elements in

C∞(T 1
1Λ). This connection corresponds to the “algebraic connection” defined in[20, (5.6)].

Lemma 8.

(1) ∇ ± are compatible with theL2-metricsγ± and with the almost complex structures
J ± in horizontal directions. In other words, theL2 superconnection∇ is Kähler in
horizontal directions.

(2) ∇s,± ≡ (Q± + I )−s/2∇ ±(Q± + I )s/2 are compatible with theHs-metricsγ s,± and
with the almost complex structuresJ ± andJ − in horizontal directions. In particular,
the connection

∇s ≡ (∇s,+)∗ ⊗ 1 + 1 ⊗ ∇s,−

is Kähler in horizontal directions.

Remark. It is shown in[20, Theorem 5.2.2]that in horizontal directions,∇ − equals the
L2-Levi-Civita connection on the manifold of almost complex structures.

Proof.

(1) The compatibility of∇ − with J −, γ − is shown in[20, Theorems 5.2.1 and 5.2.2]. We
adapt this proof to∇ + and refer the reader to[20] for details.

To prove the compatibility of∇ + with γ +, first note that the derivative of the map
g �→ µg sending a Riemannian metricg onΛ to the corresponding volume fromµg
vanishes in the direction of a traceless covariant two tensor. Indeed, we haveDh(µg) =
1
2 trg(h)µg = 0. For any horizontal vector fieldN atJ , we setn ≡ DJΦ(N), forΦ in
(8.1). n is a traceless covariant two tensor[20, Theorem 2.5.6]. Foru, v ∈ Γ (E+), we
have

N〈u, v〉+
J = n

∫
Λ

dµgJ gJabu
avb

=
∫
Λ

dµgJ nabu
avb +

∫
Λ

dµgJ gJabDnu
avb +

∫
Λ

dµgJ gJabu
aDnv

b

=
∫
Λ

dµgJ gJacN
c
dJ

d
b u

avb + 〈DNu, v〉+
J + 〈u,DNv〉+

J

= 〈NJu, v〉+
J + 〈DNu, v〉+

J + 〈u,DNv〉+
J

= 1

2
〈NJu, v〉+

J − 1

2
〈u, JNv〉+

J + 〈DNu, v〉+
J + 〈u,DNv〉+

J

= 〈∇ +
N u, v〉+

J + 〈u,∇ +
N v〉+

J , (8.6)

where we have usedJN = −NJandN∗ = N .
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For the compatibility with the almost complex structureJ+, we have

[∇ +
N ,J

+]u = DN(Ju)+ 1
2NJ2u− JDNu− 1

2JNJ= Nu− 1
2Nu+ 1

2J
2Nu = 0.

(2) This is a straightforward consequence of (1), once we check the compatibility ofQ±
J

with the almost complex structuresJ±
J , which follows fromLemma 7. �

8.4. A half-weighted vector bundle

The bundle

Hom(E+,1,0, E−,1,0) ≡ (E+,1,0)∗ ⊗ E−,1,0

now has a connection∇s ≡ (∇s,+)∗ ⊗ 1 + 1 ⊗ ∇s−, which is horizontally Kähler. In a
local chart, we have∇s = d + θs = d + θs,− − θs,+, so we can equivalently view∇s as a
superconnection on the superbundle

E1,0 ≡ E+,1,0 ⊗ E−,1,0. (8.7)

The family

J → L
1,0
J ≡

[
0 L−

J ≡ ∂J

L+
J ≡ ∂̄J 0

]
,

where ∂̄J is the Cauchy–Riemann operator for(Λ, J ), defines a section of the bundle
Ell(E1,0). By Lemma 8, L1,0

J is a self-adjoint elliptic operator for the Hermitian product
built from the almost complex structureJ ≡ J+⊕J− and the scalar product〈·, ·〉+J ⊕〈·, ·〉−J
(cf. [1,20]for a string theory perspective). Thus(E1,0, L1,0) is a half-weighted vector bundle.
Q±1,0 ≡ L∓L± are positive self-adjoint sections of Ell(E±,1,0). HereL∓ is either theL2

or theHs adjoint ofL± with respect to the inner products (8.4). This data determines a
weighted superbundle(E1,0,Q1,0 ≡ Q+,1,0 ⊕Q−,1,0).

8.5. The first Chern forms ofE ±,1,0

Lemma 9. Let (E,Q) be a weighted vector bundle with an almost complex structureJ
compatible with Q(i.e.QJ = JQ), let (E1,0,Q1,0) denote its(1,0) part, and letA ∈
Γ (CL(E )) satisfyAJ = JA. Then

trQ
1,0
(A1,0) = trQ(A)+ i trQ(JA).

Proof. LetA1,0 be the(1,0) part ofAC, the fiberwise complexification ofA with respect
toJ. It is standard that tr(A1,0) = tr(A)+ i tr(JA). Then

trQ
1,0
(A1,0) = Limz→0 tr(A1,0(Q1,0)−z) = Limz→0 tr((AQ−z)1,0)

= Limz→0tr(AQ−z)+ i Lim z→0 tr(JAQ−z)
= trQ(A)+ i trQ(JA). �

We now compute the curvature of∇s,± onE ±.
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Lemma 10. For s > 1, the curvaturesΩs,±, of the connections∇s,± are zero-order PDOs
given by

Ωs,+(M,N)H = −1
4(Q

+ + I )−s/2[M,N ]opH(Q
+ + I )s/2,

Ωs,−(M,N)H = (Q− + I )−s/2(−1
2[M,N ]opH + 1

2(−MHN + NHM)

−1
4[{M,H }, {N,H }])(Q− + I )s/2,

forM,N,H ∈ TJA(Λ).

Here [M,N ]op denotes the multiplication operator in the fiber overJ associated to the
bracket (pointwise overΛ) of the matricesM,N . In contrast, [M,N ] denotes the bracket
of vector fields onA which are given by local extensions of the tangent vectorsM,N atJ .
At a fixedJ , we may extendM,N so that [M,N ] = 0.

Proof. We prove the first equality only, since the second is similar. UsingM(J) = M,
JM = −MJ, J 2 = −Id and similar formulas forN , we have

Ωs,+(M,N) = (∇s,+)2(M,N) = [∇s,+M ,∇s,+N ] − ∇s,+[M,N ]

= (Q+ + I )−s/2([∇ +
M,∇ +

N ] − ∇ +
[M,N ])(Q

+ + I )s/2

= (Q+ + I )−s/2(dθ +(M,N)+ θ + ∧ θ +(M,N))(Q+ + I )s/2

= (Q+ + I )−s/2(M(θ+(N))−N(θ +(M))− θ +([M,N ])

+ θ + ∧ θ +(M,N))(Q+ + I )s/2

= (Q+ + I )−s/2(−1
2[M,N ]op + 1

4[MJ,NJ])(Q+ + I )s/2

= (Q+ + I )−s/2(−1
4[M,N ]op)(Q

+ + I )s/2. �

Proposition 11. The weighted first Chern formRQ1 on the weighted vector bundle
(E1,0,Q1,0) with the connections∇s is independent of the parameterµ used in the renor-
malization procedure and independent ofs > 1. ForM,N ∈ TJA(Λ), we have

R
Q
1 (M,N) = i trQ

−
(1

2J [M,N ]op − 1
2(−M(·)N +N(·)M)+ 1

4J [{M, ·}, {N, ·}])
+1

4 i trQ
+
(J [M,N ]op).

The traces are taken with respect to theL2 inner products. Note that, in agreement with
Corollary 6, the curvature on the associated determinant bundle is theQ-weighted trace of
a multiplication operator.

Proof. By Lemma 7,Q+ commutes with the almost complex structure, so the(1,0) part
Ωs,+,1,0(M,N) of Ωs,+(M,N) satisfiesΩs,+,1,0(M,N) = (Ωs,+(M,N))1,0. Applying
Lemmas 9 and 10, we find

trsQ
+1,0

,µ(Ωs,+,1,0(M,N)) = trsQ
+,µ(Ωs,+(M,N))+ i trsQ

+,µ(J +
J Ω

s,+(M,N))

= −1
4 i trQ

+,µ(J [M.N ]op).
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Note that trsQ
+,µ(Ωs,+(M,N)) = 0, since the curvature form is a skew-symmetric endo-

morphism for fixedM,N . TheHs trace trs defined via the inner product〈·, ·〉s,+J in the first
line equals theL2 trace in the second line, because the powers(Q+)±(s/2) cancel in the
computation of trs. Similarly, we obtain

trsQ
−1,0

,µ(Ωs,−,1,0(M,N))
= trsQ

−,µ(Ωs,−(M,N))+ i trsQ
−,µ(J−

J Ω
s,−(M,N))

= i trQ
−,µ(1

2J [M,N ]op − 1
2(−M(·)N +N(·)M)+ 1

4(J {M, ·}, {N, ·}])
For a differential operatorA, there is no logarithmic divergence in the asymptotics of
tr(Ae−εQ) asε → 0. Sinceµ keeps track of the logarithmic divergence, the renormalized
traces above are independent ofµ.

The result now follows fromEq. (5.8). �

Remark. A matrixH ∈ TJAs(Λ) satisfiesHJ = −JH so two such matricesH,K satisfy
HKJ = JHK. Writing

J =
[

0 −1

1 0

]

in isothermal coordinates, we see thatHK is of the form[
α β

β −α

]
,

as is any even product of matrices inTJAs(Λ). HenceJ [M,N ]op is of the form[
γ δ

−δ γ

]
.

In contrast to an incorrect claim in[17], trQ
+,µ(J [M,N ]op) need not vanish.

8.6. ∇ + and the Bismut–Freed connection

We now show that the connection∇ + of (8.5a)coincides with the Bismut–Freed connec-
tion associated to the string theory fibrationΛ → (A×Λ)/D→ A/D, whereD = Diff s+1

0
is the (Sobolevs + 1) isotopy group ofΛ. It is equivalent to work with the trivial fibration
Λ → A × Λ → A, and to consider only directions perpendicular to the action ofD on
A×Λ with respect to the natural metric.

‖(h, v)‖2
x = ‖h‖2

gJ
+ ‖v‖2

gJ
, (8.8)

whereh ∈ TA, v ∈ TΛ and the projectionπ : A×Λ → A hasπ(x) = J . Note that the
role of∇ − of (8.5b)is implicit, since it is the Levi-Civita connection for the metric onTA.
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Let ∇LC be the Levi-Civita connection onA × Λ for the metric(8.8). By (7.10), for
ψ ∈ Γ (TΛ), we must show that

∇ +
h ψ = PTΛ∇LC

h ψ, (8.9)

wherePTΛ is the orthogonal projection ofT (A×Λ) to TΛ. By the six term formula for
the Levi-Civita connection, we have

2〈PTΛ∇LC
h ψ, v〉 = 2〈∇LC

h ψ, v〉 = h〈ψ, v〉 + ψ〈h, v〉 − v〈h,ψ〉 + 〈[h,ψ ], v〉
+〈[v, h], ψ〉 − 〈[ψ, v], h〉. (8.10)

On the right-hand side of(8.10), we may extendh, v arbitrarily nearx, so we chooseh to
be horizontal andv to be vertical nearx. Then

〈h, v〉 = 〈h,ψ〉 = 0 (8.11)

in (8.10).
Let φvt be the vertical flow ofv. Then

〈[v, h], ψ〉 =
〈

d

dt

∣∣∣∣
t=0

φv−t,∗h,ψ
〉

= d

dt

∣∣∣∣
t=0

〈φv−t,∗h,ψ〉
= 〈h, [−v,ψ ]〉 = 〈[ψ, v], h〉; (8.12)

sinceD preserves the volume measure dµgJ , we may move d/dt past the inner product in
the first line. Combining(8.10)–(8.12)gives

2〈PTΛ∇LC
h ψ, v〉 = h〈ψ, v〉 + 〈[h,ψ ], v〉 = 〈∇ +

h ψ, v〉 + 〈ψ,∇ +v〉 + 〈[h,ψ ], v〉
= 〈h(ψ), v〉 + 〈ψ, h(v)〉 + 〈[h,ψ ], v〉,

where we have used the third line of(8.6)in the last line. Moreover, [h,ψ ] = h(ψ)−ψ(h) =
h(ψ), sinceh ∈ TAmay be lifted to be constant in vertical directions. So we finally obtain

2〈PTΛ∇LC
h ψ, v〉 = 2〈h(ψ), v〉 + 〈hJψ, v〉 + 〈ψ, h(v)〉 = 2〈h(ψ), v〉 + 〈hJψ, v〉

= 2〈∇ +
h ψ, v〉,

since the extension ofv may be taken to be constant in vertical directions, and so
h(v) = 0.
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Appendix A. Superconnection formalism

This appendix summarizes the superconnection formalization used inSection 6. Useful
references are[5,19].

A.1. Super vector bundle valued forms

A super vector bundleE over a manifoldB is aZ2 graded vector bundleE = E+ ⊕ E−
overB. LetΩ(B, E) be the space ofE-valued differential forms onB. SinceΩ(B, E) �
Ω(B) ⊗C∞(B) Γ (E ), whereΩ(B) is the exterior algebra of forms onB, an element of
Ω(B, E) can be written asω ⊗ σ with ω ∈ Ω(B), σ ∈ Γ (E ). TheZ grading onΩ(B)
induces aZ2 grading onΩ(B) = Ω +(B) ⊕Ω −(B) into forms of even and odd degree,
which, with theZ2 grading onE, yields aZ2 grading onΩ(B, E) = Ω +(B, E)⊕Ω −(B, E),
where

Ω +(B, E)≡Ω +(B, E+)⊕Ω −(B, E−), Ω −(B, E)≡Ω +(B, E−)⊕Ω −(B, E+).

A.2. From a connection to a one-parameter family of superconnections

A superconnection is an odd first-order differential operator∇ : Ω±(B, E) → Ω∓(B, E )
which satisfies the Leibniz rule in theZ2 graded sense:

∇(ω ⊗ σ) = dω ⊗ σ + (−1)|ω|ω ⊗ ∇σ.
A connection∇ onE which preserves theZ2 grading defines a map

∇ : Γ (E ±)(⊂ Ω±(B, E )) → Γ (T ∗B ⊕ E ±) ⊂ Ω∓(B, E ),

which extends uniquely to a superconnection onE.
The Z2 grading onE induces aZ2 grading on the bundle Hom(E, E ) = Hom+(E ) ⊕

Hom−(E ), where the even bundle maps, the sections of Hom+(E ), preserve theZ2 grading
onE, and the odd bundle maps, the sections of Hom−(E ), takeE ± to E∓. A sectionL of
Hom−(E ) induces an odd map

L : Ω±(B, E ) → Ω∓(B, E ), ω ⊗ σ �→ (−1)|ω|ω ⊗ Lσ.

∇ andL induce a one-parameter family of superconnections∇Lt ≡ ∇ + √
tL, t > 0, onE.

A.3. From a superconnection onE to a superconnection onHom(E, E )

A superconnection∇ onE induces a connection on Hom(E, E ) defined by

[∇, A] ≡ ∇A− (−1)|A|A∇,
where|A| = 0 if A is even and|A| = 1 if A is odd. IfA = L ∈ Γ (Hom−(E )) and∇ is a
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superconnection induced by aZ2 grading preserving connection onE, then

[∇, L](ω ∈ σ) ≡ ∇(L(ω ⊗ σ))+ L(∇(ω ⊗ σ))

= ∇((−1)|ω|ω ⊗ Lσ)+ L(dω ⊗ σ + (−1)|ω|ω ⊗ ∇σ)
= (−1)|ω| dω ⊗ Lσ + (−1)|ω|+1 dω ⊗ Lσ + (−1)2|ω|ω ⊗ ∇Lσ

+ (−1)2|ω|+1ω ⊗ L∇σ = ω ⊗ [∇, L]σ.

In the last line, the bracket is an ordinary bracket.

Appendix B. Trace forms and Wodzicki residues

In the appendix, we express the divergences in the asymptotics of the trace forms
〈A0, A1, . . . , Ak〉ε,k,Q asε → 0 in terms of Wodzicki residues. Such a relation is suggested
by Theorems 3 and 5, which compute the obstruction to the equality of the determinant cur-
vature and the renormalized first Chern form alternately as such a divergent term and as a
Wodzicki residue, respectively. Such trace forms have occurred in quantum algebras stud-
ied by Jaffe et al.[10] and in local index theory in non-commutative geometry treated by
Connes and Moscovici[7].

B.1. Notation

For j ∈ N andA,Q ∈ CL(M,E) such that theQ has scalar top order symbol, [A]jQ ∈
CL(M,E) is the operator defined inductively by

[A]0Q ≡ A, [A]j+1
Q ≡ [Q, [A]jQ].

We will often drop the subscriptQ, and use notation from the body of the paper. Notice
that the operator [A]jQ is of ordera + j (q − 1) wherea = ord(A), q = ord(Q), and that

[A]jεQ = εj [A]jQ for anyε > 0, j ∈ N.

Lemma B.1 ([14], Lemma 4.2).If p, ε,N > 0 satisfy((N − a)/q)− p − ε > 0, then

e−tQA =
N−1∑
j=0

(−t)j
j !

[A]jQ e−tQ + RN(A,Q, t),

where for anyc > 0such thatQ+c is invertible, there existsC > 0such that‖RN(A,Q, t)·
(Q+ c)p‖ ≤ Ct((N−a)/q)−p−ε.

Lemma B.2. GivenA0, A1, . . . , Ak ∈ CL(M,E) and jk ≤ Nk ∈ N, there existN1,

N2, . . . , Nk−1 ∈ Z such that forji ≤ Ni andαi ∈ {0,1}, i = 1, . . . , k with at least oneαi
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unequal to one, the operator

A0(RN1(A1,Q, σ0))
1−α1([A1]j1Q)

α1

× · · ·
(
RNi

(
Ai,Q, σ0 +

i∑
l=1

αlσl

))1−αi
([Ai ]

ji
Q)
αi

× · · ·
(
RNk

(
Ak,Q, σ0 +

k∑
i=1

αiσi

))1−αk
([Ak]

jk
Q)
αk (B.1)

is trace-class with trace bounded by

C ·
k∏
j=1

σ0 +
j∑
i=1

αiσj

(1−αj )((Nj−aj )/(q−pj ))

for some positive constant C.

Proof. We proceed by induction onk. Fork = 1, there is an integerp0 such thatA0Q
−p0

is trace-class. ByLemma B.1, we can chooseN1 such thatQp0RN1(A1,Q, σ0) is bounded
by

Cσ
((N1−a1)/q)−p0
0 , (B.2)

wherea1 = ord(A1) andC is a positive constant. ThenA0RN1(A1,Q, σ0) is trace-class
with trace bounded by an expression similar to(B.2).

We now assume the lemma throughk − 1 for the induction step.C will denote a con-
stant which may change from line to line. ByLemma B.1, there existsNk ∈ Z such that
RNk(Ak,Q, σ0 +∑k

i=1 αiσi) is bounded byC(σ0 +∑k
i=1 αiσi)

(Nk−ak)/q . Forαk = 0, by
induction we can chooseN1, . . . , Nk−1 such that

A0(RN1(A1,Q, σ0))
1−α1([A1]j1Q)

α1 · · ·RNk−1

(
Ak−1,Q, σ0 +

k−1∑
l=1

α1σl

)
[Ak−1]jk−1

Q

is trace-class with trace bounded by

C ·
k−1∏
j=1

σ0 +
j∑
i=1

αiσi

(1−αj )((Nj−aj )/(q−pj ))

.

It follows from Lemma B.1that RNk(Ak,A, σ0 + ∑k
i−1 αiσi) is bounded in norm by

C · (σ0 + ∑k
i=1 αiσi)

(Nk−ak)/q . Hence(B.1) is bounded by

C ·
k−1∏
j=1

σ0 +
j∑
i=1

αiσi

(1−αj )((Nj−aj )/(q−pj ))

·
(
σ0 +

k∑
i=1

αiσi

)(Nk−ak)/q
.
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Now assumeαk = 1. We can choosepk−1, Nk−1 large enough thatQ−pk−1[Ak]
jk
Q is

bounded and((Nk−1 − ak−1)/q)− pk−1 > 0. ThenLemma B.1implies

∥∥∥∥∥RNk−1

(
Ak1,Q,

(
σ0+

k−1∑
l=1

αlσl

)
Qpk−1

)∥∥∥∥∥≤C
(
σ0+

k−1∑
l=1

αlσl

)((Nk−1−ak−1)/q)−pk−1

.

If αk−1 = 0, this estimate and the lemma fork − 2 produces the upper bound

C ·
k−2∏
j=1

σ0 +
j∑
i=1

αiσi

(1−αj )((Nj−aj )/(q−pj ))

·
(
σ0 +

k−1∑
i=1

αiσi

)((Nk−1−ak−1)/q)−pk−1

for the trace. Ifαk−1 = 1, there existpk−2, Nk−2 such thatQ−pk−2[Ak−1]jk−1
Q [Ak]

jk
Q is

bounded and((Nk−2 − ak−2)/q) − pk−2 > 0. Applying the above procedure gives the
desired estimates. �

Proposition B.3. LetA0, A1, . . . , Ak ∈ CL(M,E). There existN1, N2, . . . , Nk ∈ Z such
that for ε > 0.

〈A0, A1, . . . , Ak〉√ε,k,Q

=
N1−1∑
j1=0

· · ·
Nk−1∑
jn=0

εj1+···+jn
j1! · · · jk!

∫ 1

0
· · ·

∫ 1

0
(−1)j1+···jk (σ0)

j1(σ0 + σ1)
j2

· · · (σ0 + σ1 + · · · + σk−1)
jk tr(A0[A1]j1Q · · · [Ak]

jk
Q e−εQ)dσ0 · · · dσk + o(ε).

Proof. IteratingLemma B.1, we find

〈A0, A1, . . . , Ak〉ε,k,Q

=
N1−1∑
j1=0

· · ·
Nk−1∑
jn=0

(−1)j1+···jk ε
j1+···+jk
j1! · · · jk!

∫ 1

0
· · ·

∫ 1

0
(σ0)

j1(σ0 + σ1)
j2

· · · (σ0 + σ1 + · · · + σk−1)
jk tr(A0[A1]j1Q · · · [Ak]

jk
Q e−εQ)dσ0

· · · dσk + RN1,N2,...,Nk (ε),
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with RN1,N2,...,Nk (ε) a finite linear combination of terms of the type∫
σ0+···+σk=1,σi≥0

tr

A0(RN1(A1,Q, σ0))
1−α1

 N1∑
j1=0

(−σ0)
j1

j1!
[A1]j1Q

α1

×(RN2(A2,Q, σ2))
1−α2

 N2∑
j2=0

(−(σ0 + α1σ1))
j2

j2!
[A2]j2Q

α2

× · · · (RNk (An,Q, σk))1−αk

 Nn∑
jn=0

(−(σ0 + α1σ1 + · · · + αkσk))
jk [Ak]

jk
Q

jk!

αk

× e−ε(σ0+(1−α1)σ1+···+(1−αk)σk)Q
 dσ0 · · · dσk,

with αi equal to 0 or 1, and(α1, . . . , αn) �= (1, . . . ,1). By Lemma B.2,N1, N2, . . . , Nk can
be chosen so that the integrals inRN1,N2,...,Nk (ε) converge andRN1,N2,...,Nk (ε)=o(ε). �

B.2. The asymptotics of regularized trace forms

We now investigate the asymptotic behavior or the trace forms asε → 0.

Theorem B.4. LetA0, . . . , An ∈ CL(M,E). Then

(i) 〈A0, A1, . . . , An〉ε,n,Q has the following asymptotic expansion asε → 0:

〈A0, A1, . . . , An〉ε,n,Q ∼
∞∑
j=0

αj (A0, A1, . . . , An)ε
λj

+
∞∑
k=0

βk(A0, A1, . . . , An)ε
k logε

+
∞∑
k=0

λk(A0, A1, . . . , An)ε
k,

whereλj = (j − a − dimM)/q with a ≡ ord(A0)+ · · · + ord(An), q ≡ ord(Q), and
αj (A0, A1, . . . , An), βk(A0, A1, . . . , An), γk(A0, A1, . . . , An) ∈ C.

(ii) For j ∈ N withRe(λj ) = (j−a−dimM)/q < 0,there is a multi-index(N1, . . . , Nn) ∈
Nn such that

αj (A0, A1, . . . , An) =
N1∑
j1=0

· · ·
Nn∑
jn=0

(−1)j1+···jn
[∫ 1

0
· · ·

∫ 1

0

(
σ
j1
1 · · · σ jnn

× Γ ((−j + a + dimM)/q)+ (j1 + · · · + jn)

q · j1!j2! · · · jn!

)
dσ1 · · · dσn

]
×res(A0[A1]j1Q · · · [An]

jn
QQ

((j−a−dimM)/q)−(j1+···+jn)),

whereresdenotes the Wodzicki residue.
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Remark. Assuming Re(λj ) < 0 ensures thatΓ (((−j +a+dimM)/q)+ (j1 +· · ·+ jn))
is well defined for all(j1, . . . , jn) ∈ Nn.

The proof of the theorem depends on a lemma whose proof we include for completeness.

Lemma B.5. LetA ∈ CL(M,E) andQ ∈ Ell +
ord>0(M,E). There is the asymptotic expan-

sion asε → 0

tr(Ae−εQ) ∼
∞∑
j=0

αj (A)ε
λj +

∞∑
k=0

βk(A)ε
k logε +

∞∑
k=0

γk(A)ε
k, (B.3)

with αj (A), βk(A), γk(A) ∈ C, a = ord(A), q = ord(Q), andλj = (j − a − dimM)/q.
For j with Re(λj ) < 0 (e.g.ord(A) /∈ Z), and fork ∈ N, we have

αj (A) = Γ ((−j + a + dimM)/q)

q
res(AQ(−j−a−dimM)/q),

βk(A) = (−1)k
q res(AQ−k)
(k − 1)!

.

Proof. For s ∈ C − {0,−1,−2, . . . }, we have

q −1 res(AQ−s)

= resz=0 tr(AQ−(z+s)) = resz=0

(
1

Γ (s + z)

∫ ∞

0
t s+z−1 tr(Ae−tQ)dt

)

= resz=0

(
1

Γ (s)

∫ 1

0
t s+z−1 tr(Ae−tQ)dt + 1

Γ (s)

∫ ∞

1
t s+z−1 tr(Ae−tQ)dt

)

=
∑
j

αj (A)

Γ (s)
resz=0

(∫ 1

0
tz+λj+s−1 dt

)

+
∞∑
k=0

βk(A)

Γ (s)
resz=0

(∫ 1

0
tk+z+s−1 log t dt

)

= Γ (s)−1
∑
j

αj (A) resz=0

[
tz+λj+s

z+ λj + s

]1

0
= Γ (s)−1α−q·s+a+dimM(A) (B.4)

sinceλj = −s iff j = −qs+a+dimM. Notice thats ∈ −N iff λj = (j−a−dimM)/q ∈
N, which does not occur if Re(λj ) < 0. In this computation, we use the fact that the terms
in (B.3) containing logarithmic divergences inε or having integral powers ofε do not
contribute to the residue atz = 0. Similarly, the

∫∞
1 term in (B.4) does not contribute to

the residue.
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For s = −l, l ∈ N, usingΓ (z) = z(z − 1) · · · (z − k + 1)Γ (z − k) andΓ (z)−1 ∼ z as
z → 0, we find

q −1 res(AQ−l ) = resz=0

(
1

Γ (z− l)

∫ ∞

0
tz−(l+1) tr(Ae−tQ)dt

)
= resz=0

(
z(z− 1) · · · (z− l + 1)

Γ (z)

∫ ∞

0
tz−(l+1) tr(Ae−tQ)dt

)
= −

∞∑
k=0

βk resz=0

(
z2(z− 1) · · · (z− l + 1)

tz−l+k

(z− l + k)2

)
= (−1)l(l − 1)!βl. �

Proof of the Theorem.

(i) The operatorA0[A1]j1Q · · · [An]
jn
Q is a PDO of order at mosta + (j1 + · · · + jn)q,

so tr[A0[A1]j1Q · · · [An]
jn
Q e−εQ) has an asymptotic expansion as in(B.3) with λj =

[(j−a−dimM)/q]−(j1+· · ·+jn). By Proposition B.1,〈A0, A1, . . . , An〉ε,n,Q has an
asymptotic expansion as in(B.3)withλj = (j−a−dimM)/q. Letα̃j (A0, A1, . . . , An)

be the coefficient ofελj in the asymptotic expansion of tr(A0[A1]j1Q · · · [An]
jn
Q e−εQ)

with λj = [(j − a − dimM)/q] − (j1 + · · · + jn).
(ii) By Lemma B.3, if Re(λj )− (j1 + · · · + jn) < 0 (e.g. if Re(λj ) < 0), then

α̃j (A0, A1, . . . , An)

= Γ (−λj + (j1 + · · · + jn))

q

× res(A0[A1]j1Q · · · [An]
jn
QQ

((j−a−dimM)/q)−(j1+···+jn)).

Part (ii) of the theorem follows. �
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